DOI QR코드

DOI QR Code

Pd-Catalyzed Oxidative Arylation of Cinnamylphosphonates: An Efficient Synthesis of (Z)-Alkenylphosphonates

  • Lee, Hyun Seung (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lim, Cheol Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Hyun Ju (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2012.08.11
  • Accepted : 2012.08.25
  • Published : 2012.11.20

Abstract

Various alkenylphosphonates were prepared via the palladium-catalyzed oxidative arylation of cinnamylphosphonates with arenes. The regioselectivity during the ${\beta}$-H elimination of the corresponding alkylpalladium intermediate was governed most likely by steric factors.

Keywords

References

  1. Li, Z.; Zhang, Y.; Liu, Z.-Q. Org. Lett. 2012, 14, 74. https://doi.org/10.1021/ol202859b
  2. Zhang, Y.; Li, Z.; Liu, Z.-Q. Org. Lett. 2012, 14, 226. https://doi.org/10.1021/ol203013p
  3. Shang, X.; Xiong, Y.; Zhang, L.; Liu, Z.-Q. Synlett 2012, 259.
  4. Pan, D.; Yu, M.; Chen, W.; Jiao, N. Chem. Asian J. 2010, 5, 1090. https://doi.org/10.1002/asia.200900558
  5. Pan, D.; Jiao, N. Synlett 2010, 1577
  6. Skold, C.; Kleimark, J.; Trejos, A.; Odell, L. R.; Nilsson Lill, S. O.; Norrby, P.-O.; Larhed, M. Chem. Eur. J. 2012, 18, 4714. https://doi.org/10.1002/chem.201102678
  7. Guo, H.-M.; Rao, W.-H.; Niu, H.-Y.; Jiang, L.-L.; Liang, L.; Zhang, Y.; Qu, G.-R. RSC Adv. 2011, 1, 961. https://doi.org/10.1039/c1ra00410g
  8. Yahiaoui, S.; Fardost, A.; Trejos, A.; Larhed, M. J. Org. Chem. 2011, 76, 2433. https://doi.org/10.1021/jo1018188
  9. Prediger, P.; Barbosa, L. F.; Genisson, Y.; Correia, C. R. D. J. Org. Chem. 2011, 76, 7737.
  10. Trejos, A.; Fardost, A.; Yahiaoui, S.; Larhed, M. Chem. Commun. 2009, 7587.
  11. Su, Y.; Jiao, N. Org. Lett. 2009, 11, 2980. https://doi.org/10.1021/ol9009865
  12. Datta, G. K.; Nordeman, P.; Dackenberg, J.; Nilsson, P.; Hallberg, A.; Larhed, M. Tetrahedron: Asymmetry 2008, 19, 1120. https://doi.org/10.1016/j.tetasy.2008.04.004
  13. Datta, G. K.; Larhed, M. Org. Biomol. Chem. 2008, 6, 674. https://doi.org/10.1039/b719131f
  14. Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc. 2008, 130, 11270. https://doi.org/10.1021/ja804120r
  15. Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J. Liu, Q.; Zhang, L. Jiao, N. Angew. Chem. Int. Ed. 2008, 47, 4729. https://doi.org/10.1002/anie.200800966
  16. Svennebring, A.; Nilsson, P.; Larhed, M. J. Org. Chem. 2004, 69, 3345. https://doi.org/10.1021/jo035815f
  17. Llamas, T.; Arrayas, R. G.; Carretero, J. C. Adv. Synth. Catal. 2004, 346, 1651. https://doi.org/10.1002/adsc.200404180
  18. Nilsson, P.; Larhed,M.; Hallberg, A. J. Am. Chem. Soc. 2003, 125, 3430. https://doi.org/10.1021/ja029646c
  19. Mauleon, P.; Nunez, A. A.; Alonso, I.; Carretero, J. C. Chem. Eur. J. 2003, 9, 1511. https://doi.org/10.1002/chem.200390173
  20. Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217. https://doi.org/10.1021/ja011019k
  21. Mauleon, P.; Alonso, I.; Carretero, J. C. Angew. Chem. Int. Ed. 2001, 40, 1291. https://doi.org/10.1002/1521-3773(20010401)40:7<1291::AID-ANIE1291>3.0.CO;2-9
  22. Lee, H. S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Adv. Synth. Catal. 2012, 354, 2419 https://doi.org/10.1002/adsc.201200306
  23. Basavaiah, D.; Pandiaraju, S. Tetrahedron 1996, 52, 2261. https://doi.org/10.1016/0040-4020(95)01055-6
  24. Das, B.; Bhunia, N.; Damodar, K. Synth. Commun. 2012, 42, 2479. https://doi.org/10.1080/00397911.2011.561396
  25. Janecki, T.; Bodalski, R. Synthesis 1990, 799.
  26. Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9, 3619. https://doi.org/10.1021/ol701500s
  27. Ho, C.-Y.; Chan, C.-W.; Wo, S.-K.; Zuo, Z.; Chan, L.-Y. Org. Biomol. Chem. 2010, 8, 3480. https://doi.org/10.1039/c001660h
  28. Kim, K. H.; Lee, S.; Kim, S. H.; Lim, C. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 5088. https://doi.org/10.1016/j.tetlet.2012.07.023
  29. Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6228. https://doi.org/10.1016/j.tetlet.2011.09.066
  30. Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 2761. https://doi.org/10.1016/j.tetlet.2012.03.100
  31. Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 1323. https://doi.org/10.1016/j.tetlet.2011.12.135
  32. Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. https://doi.org/10.1021/ja067144j
  33. Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. https://doi.org/10.1021/ja0745862
  34. Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. https://doi.org/10.1126/science.1141956
  35. Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022. https://doi.org/10.1021/jo800596m
  36. Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658. https://doi.org/10.1021/jo202342q
  37. Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676. https://doi.org/10.1021/ja107159b
  38. Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 8138. https://doi.org/10.1021/jo201516v
  39. Potavathri, S.; Kantak, A. DeBoef, B. Chem. Commun. 2011, 47, 4679. https://doi.org/10.1039/c1cc10755k
  40. Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179. https://doi.org/10.1039/c0cc01617a
  41. Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P. Synlett 2009, 2375.
  42. Konno, T.; Kinugawa, R.; Morigaki, A.; Ishihara, T. J. Org. Chem. 2009, 74, 8456. https://doi.org/10.1021/jo9017028
  43. Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637. https://doi.org/10.1021/ol801935r
  44. Mei, Y.-Q.; Liu, J.-T. Tetrahedron 2008, 64, 8801. https://doi.org/10.1016/j.tet.2008.06.084
  45. Quntar, A.; Rosenthal, D.; Srebnik, M. Tetrahedron 2006, 62, 5995. https://doi.org/10.1016/j.tet.2006.04.013
  46. Ben-Valid, S.; Quntar, A.; Srebnik, M. J. Org. Chem. 2005, 70, 3554. https://doi.org/10.1021/jo047913m
  47. Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681. https://doi.org/10.1021/ol047516y
  48. Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080. https://doi.org/10.1021/ja0494297
  49. Maffei, M.; Buono, G. Tetrahedron 2003, 59, 8821. https://doi.org/10.1016/j.tet.2003.08.067
  50. Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 729. https://doi.org/10.1021/ol027515a
  51. Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315. https://doi.org/10.1021/ol0346640
  52. Quntar, A.; Melman, A.; Srebnik, M. J. Org. Chem. 2002, 67, 3769. https://doi.org/10.1021/jo016403e
  53. Chatterjee, A. K.; Choi, T.-L.; Grubbs, R. H. Synlett 2001, 1034.
  54. Zhao, C.-Q.; Han, L.-B.; Goto, M.; Tanaka, M. Angew. Chem. Int. Ed. 2001, 40, 1929. https://doi.org/10.1002/1521-3773(20010518)40:10<1929::AID-ANIE1929>3.0.CO;2-M
  55. Pergament, I.; Srebnik, M. Org. Lett. 2001, 3, 217. https://doi.org/10.1021/ol006836o
  56. Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571. https://doi.org/10.1021/ja953690t
  57. Burini, A.; Cacchi, S.; Pace, P.; Pietroni, B. R. Synlett 1995, 677.
  58. Rabasso, N.; Fadel, A. Tetrahedron Lett. 2010, 51, 60. https://doi.org/10.1016/j.tetlet.2009.10.087
  59. Cullen, S. C.; Rovis, T. Org. Lett. 2008, 10, 3141. https://doi.org/10.1021/ol801047k
  60. Yan, B.; Spilling, C. D. J. Org. Chem. 2004, 69, 2859. https://doi.org/10.1021/jo035795h
  61. Rowe, B. J.; Spilling, C. D. J. Org. Chem. 2003, 68, 9502. https://doi.org/10.1021/jo0351318
  62. Inoue, H.; Tsubouchi, H.; Nagaoka, Y.; Tomioka, K. Tetrahedron 2002, 58, 83. https://doi.org/10.1016/S0040-4020(01)01089-4
  63. Fray, A.; Kraiem, J. B.; Souizi, A.; Amri, H. ARKIVOC 2012 (viii) 119.
  64. Tarabay, J.; Al-Maksoud, W.; Jaber, F.; Pinel, C.; Prakash, S.; Djakovitch, L. Appl. Catal. A: Gen. 2010, 388,124. https://doi.org/10.1016/j.apcata.2010.08.037
  65. Sajna, K. V.; Srinivas, V.; Kumara Swamy, K. C. Adv. Synth. Catal. 2010, 352, 3069. https://doi.org/10.1002/adsc.201000579
  66. Al-Maksoud, W.; Mesnager, J.; Jaber, F.; Pinel, C.; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222. https://doi.org/10.1016/j.jorganchem.2009.06.020
  67. Ma, S.; Guo, H.; Yu, F. J. Org. Chem. 2006, 71, 6634. https://doi.org/10.1021/jo060672t
  68. Chakravarty, M.; Kumara Swamy, K. C. J. Org. Chem. 2006, 71, 9128. https://doi.org/10.1021/jo061525y
  69. Kabalka, G. W.; Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685. https://doi.org/10.1016/j.tetlet.2004.04.094
  70. Brunner, H.; Le Cousturier de Courcy, N.; Genet, J.-P. Synlett 2000, 201.
  71. Xu, Y.; Jin, X.; Huang, G.; Huang, Y. Synthesis 1983, 556.
  72. Lu, X.; Sun, C.; Valentine, W. J.; E, S.; Liu, J.; Tigyi, G.; Bittman, R. J. Org. Chem. 2009, 74, 3192. https://doi.org/10.1021/jo900023u
  73. Kuemin, M.; van der Donk, W.A. Chem. Commun. 2010, 46, 7694. https://doi.org/10.1039/c0cc02958k
  74. Quntar, A.; Baum, O.; Reich, R.; Srebnik, M. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 76. https://doi.org/10.1002/ardp.200300828
  75. Delomenede, M.; Bedos-Belval, F.; Duran, H.; Vindis, C.; Baltas, M.; Negre-Salvayre, A. J. Med. Chem. 2008, 51, 3171. https://doi.org/10.1021/jm7014793
  76. Kiddle, J. J.; Babler, J. H. J. Org. Chem. 1993, 58, 3572. https://doi.org/10.1021/jo00065a021
  77. Modro, A. M.; Modro, T. A. Can. J. Chem. 1988, 66, 1541. https://doi.org/10.1139/v88-250
  78. Solberghe, G. F.; Marko, I. E. Tetrahedron Lett. 2002, 43, 5061. https://doi.org/10.1016/S0040-4039(02)01001-8
  79. Shen, R.; Jiang, X.; Ye, W.; Song, X.; Liu, L.; Lao, X.; Wu, C. Tetrahedron 2011, 67, 5610. https://doi.org/10.1016/j.tet.2011.05.104