Pd-Catalyzed Oxidative Arylation of Cinnamylphosphonates: An Efficient Synthesis of (Z)-Alkenylphosphonates

Hyun Seung Lee, Cheol Hee Lim, Hyun Ju Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received August 11, 2012, Accepted August 25, 2012

Various alkenylphosphonates were prepared via the palladium-catalyzed oxidative arylation of cinnamylphosphonates with arenes. The regioselectivity during the $\beta-\mathrm{H}$ elimination of the corresponding alkylpalladium intermediate was governed most likely by steric factors.

Key Words : Palladium, Oxidative arylation, Cinnamylphosphonate, Alkenylphosphonates, Morita-BaylisHillman adducts

Introduction

A palladium-catalyzed chelation-assisted arylation of olefins has been studied extensively for the purpose of stereo- and regiocontrol, and multiple arylations. ${ }^{1-3}$ Various functional groups such as ester, ketone, amide, imide and amines have been known to act as a directing group (DG), which stabilizes the palladium intermediate by chelation. ${ }^{1-3}$ Very recently, we also reported an efficient palladium-catalyzed chelation-assisted oxidative arylation of methyl cinnamates bearing a directing group (DG) at the α-position such as ester, amide, and imide. ${ }^{3}$ We were interested in whether the oxygen atom of a phosphonate moiety could chelate with an electrophilic palladium center and stabilize the palladium intermediate or not.

Results and Discussion

The reaction of Morita-Baylis-Hillman (MBH) acetate and triethyl phosphite readily afforded a cinnamylphosphonate via the Arbuzov reaction. ${ }^{4}$ Thus we selected a cinnamylphosphonate $2 \mathbf{2 a}$ as a representative model substrate, as shown in Scheme 1. When we examined the reaction of 2a and benzene in the presence of $\mathrm{Pd}(\mathrm{TFA})_{2} / \mathrm{AgOAc} / \mathrm{PivOH},{ }^{5}$ alkenylphosphonate $\mathbf{4 a}$ was obtained as a major product (69%) along with a low yield (9%) of cinnamylphosphonate 3a. Alkenylphosphonates are valuable compounds due to their widespread applications in organic synthesis. ${ }^{6,7}$ Thus, there have been reported numerous synthetic approaches of alkenylphosphonates ${ }^{6,7}$ including a palladium-catalyzed arylation of alkenylphosphonates. ${ }^{8}$ In addition, many alkenylphosphonates showed interesting biological properties. ${ }^{9}$

Thus we decided to examine the synthesis of alkenylphosphonates via the palladium-catalyzed oxidative arylation from cinnamylphosphonates which derived easily from the acetates of MBH adducts.
According to the palladium-catalyzed chelation-assisted arylation mechanism, ${ }^{1-3}$ compound 3a could be formed as a major product (vide infra). Thus, we speculated that compound 4a might be formed by $\mathrm{AgOAc}-$ mediated isomerization process of an initially formed 3a. However, the reaction of 3a and AgOAc in benzene (reflux, 24 h) did not produce any trace amount of $\mathbf{4 a}$, as shown in Scheme 2. The reaction of $\mathbf{4 a}$ and AgOAc also did not produce 3a. Instead, a treatment of $\mathbf{4 a}$ with DBU (0.2 equiv) in toluene (reflux, 2 h) produced 3a in high yield (94\%), ${ }^{10}$ and the result stated that compound 3a would be thermodynamically more stable than $\mathbf{4 a}$. From these experiments, we concluded that both compounds $\mathbf{3 a}$ and $\mathbf{4 a}$ must be formed directly from the Pdcatalyzed arylation reaction.
The above results (Schemes 1 and 2) stated that the regioselectivity for $\beta-H$ elimination was governed by the steric factor rather than the chelation effect between the Pd center and the phosphonate moiety, as shown in Scheme 3. In the arylation reaction of $\mathbf{2 a}$, three plausible conformers

Scheme 1

IV-VI leading to $\mathbf{4 a}-E, \mathbf{4 a}-Z$ and $\mathbf{3 a}$ could be suggested after syn-carbopalladation of $\operatorname{ArPd}(\mathrm{OPiv})$. Compound $\mathbf{4 a}-E$ could be formed via the $\beta-\mathrm{H}_{\mathrm{b}}$ elimination; however, the corresponding conformer IV was sterically too congested to form $\mathbf{4 a}-E$. Actually, compounds $\mathbf{4 a}-Z$ and $\mathbf{3 a}$ were formed by $\mathrm{H}_{\mathrm{c}} \mathrm{Pd}(\mathrm{OPiv})$ via \mathbf{V} and $-\mathrm{H}_{\mathrm{a}} \mathrm{Pd}(\mathrm{OPiv})$ via VI, respectively. Compound 3a could be formed as a major product, after rotation around $\mathrm{C}-\mathrm{C}$ single bond and subsequent $\beta-\mathrm{H}_{\mathrm{a}}$ elimination process, if the chelation effect is strong between the palladium center and the oxygen atom of a phosphonate moiety, as in our previous paper. ${ }^{3}$ However, such a chelation effect between palladium and phosphonate seemed relatively weak based on the experimental results. Thus the regioselectivity for β-H elimination was governed by the steric factor rather than the chelation effect, as noted above. The stereochemistry of $\mathbf{4 a}-Z$ could be easily deduced by comparison of the coupling constant J_{CP} of $\mathbf{4 a}$ with the reported data. ${ }^{6 \mathrm{c}, \mathrm{m}}$ The three-bond coupling constant between the carbonyl carbon ($\delta=167.86 \mathrm{ppm}$) and phosphorous atom is small (${ }^{3} J_{\mathrm{PC}}=9.7 \mathrm{~Hz}$), and this stated their cis-relationship, as shown in Scheme 3. While the trans three-bond coupling constant between the benzylic carbon ($\delta=55.99 \mathrm{ppm}$) and the phosphorous atom is large (${ }^{3} J_{\mathrm{PC}}=18.3 \mathrm{~Hz}$).

Encouraged by the results, we examined the synthesis various alkenylphosphonates $\mathbf{4 b} \mathbf{- g}$, and the results are summarized in Table 1. The reaction of 2a and m-xylene afforded $\mathbf{4 b}$ and $\mathbf{3 b}$ in 47% and 11%, respectively (entry 2). The reaction with o-xylene showed a similar result (entry 3) while the reaction of p-xylene (entry 4) failed completely presumably due to increased steric hindrance caused by the ortho-methyl group. ${ }^{3,5 f . j}$ The reaction with o-dichlorobenzene (entry 5) showed a similar result to that of o-xylene. The reactions of $\mathbf{2 b}$ and $\mathbf{2 c}$ with benzene (entries 6 and 7) produced the corresponding alkenylphosphonates $\mathbf{4 e}$ and $\mathbf{4 f}$ in good yields (63% and 68%), respectively. The corre-
sponding cinnamylphosphonates $\mathbf{3 e}$ and $\mathbf{3 f}$ were observed on TLC at the right position in low yield; however, we failed to separate them. The reaction of diisopropylphosphonate derivative $\mathbf{2 d}$ (entry 8) produced $\mathbf{4 g}(60 \%)$ and $\mathbf{3 g}(6 \%)$.
The stereochemistry of minor cinnamylphosphonates 3b-d was Z, and the counter stereoisomer (E-form) was not formed in the reaction. The result stated that compounds 3b-d must be formed in a stereoselective manner via the chelation-assisted stabilized palladium intermediates III and VI, as shown in Scheme 3 (vide supra). In a sharp contrast, a base (DBU)-mediated isomerization of $\mathbf{4 d}$, as an example, produced a mixture of E / Z isomers, as shown in Scheme 4. The Z stereochemistry of $\mathbf{3 d}$, as an example, was confirmed by NOE experiment, as shown in Scheme 4.

In summary, various alkenylphosphonates were prepared via the palladium-catalyzed oxidative arylation of cinnamylphosphonates with arenes. The regioselectivity during the $\beta-\mathrm{H}$ elimination of the corresponding alkylpalladium intermediate was governed most likely by steric factors.

Experimental Section

${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded on Varian Unity Plus 300 spectrometer using tetramethylsilane (TMS, $\delta=0 \mathrm{ppm}$) as an internal standard. ${ }^{31}$ P NMR (202 MHz) spectra were recorded on Varian Unity Plus 500 spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta=0 \mathrm{ppm})$ as an external standard. The preparation of cinnamylphosphonates 2a-d was carried out according to the literature, ${ }^{4 \mathrm{a}-\mathrm{c}}$ and the spectroscopic data of unknown compound $2 \mathbf{d}$ are as follows.

Compound 2d. 87\%; colorless oil; IR (film) 1719, 1269, 1007, $985 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.18(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.13\left(\mathrm{~d}, J_{\mathrm{PH}}=22.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.56-4.71(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.56$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69\left(\mathrm{~d}, J_{\mathrm{PH}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR

Table 1. Synthesis of alkenylphosphonates

Entry	Substrate	Conditions ${ }^{\text {a }}$	Products (\%)
	 2a	benzene reflux, 16 h	 4 a (69) 3a (9)
2	2a	m-xylene $110^{\circ} \mathrm{C}, 20 \mathrm{~h}$ $\mathrm{Pd}(\mathrm{TFA})_{2}(8 \%)$	 4b $(47)^{b}$ 3b (11) ${ }^{b}$
3	2a	o-xylene $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$ $\mathrm{Pd}(\mathrm{TFA})_{2}(8 \%)$	 $4 \mathrm{c}(46)^{\text {c }}$ 3c (13) ${ }^{\text {c }}$
4	2a	$\begin{aligned} & p \text {-xylene } \\ & 110^{\circ} \mathrm{C}, 40 \mathrm{~h} \end{aligned}$	no reaction
5	2a	$\begin{aligned} & \text { ODCB } \\ & 110^{\circ} \mathrm{C}, 18 \mathrm{~h} \\ & \operatorname{Pd}(\mathrm{TFA})_{2}(8 \%) \end{aligned}$	 $4 \mathrm{~d}(37)^{d}$ 3d (14) ${ }^{d}$
		benzene reflux, 12 h	 $4 \mathrm{e}(63)^{e}$ $3 \mathrm{e}^{e, t}$
		benzene reflux, 16 h	 $4 f(68)^{g}$ $3 f^{f, g}$
		benzene reflux, 16 h	 4 g (60) 3 g (6)

${ }^{a}$ Conditions: Arenes (60 equiv), $\operatorname{Pd}(\mathrm{TFA})_{2}(5 \mathrm{~mol} \%), \mathrm{AgOAc}$ (3.0 equiv), PivOH (6.0 equiv). ${ }^{b} \mathrm{Ar}^{1}$ is 3,5 -dimethylphenyl. ${ }^{c} \mathrm{Ar}^{2}$ is 3,4 -dimethylphenyl. ${ }^{d} \mathrm{Ar}^{3}$ is 3,4-dichlorophenyl. ${ }^{e} \mathrm{Ar}^{4}$ is 4-methylphenyl. ${ }^{.}$Failed to isolate. ${ }^{g} \mathrm{Ar}^{5}$ is 4-methoxyphenyl.
$\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.74\left(\mathrm{~d}, J_{\mathrm{PC}}=5.2 \mathrm{~Hz}\right), 23.96\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $4.1 \mathrm{~Hz}), 27.44\left(\mathrm{~d}, J_{\mathrm{PC}}=141.4 \mathrm{~Hz}\right), 52.15,70.63\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9\right.$ $\mathrm{Hz}), 124.19\left(\mathrm{~d}, J_{\mathrm{PC}}=12.0 \mathrm{~Hz}\right), 128.43,128.81,129.49$, 134.80, $140.97\left(\mathrm{~d}, J_{\mathrm{PC}}=10.9 \mathrm{~Hz}\right)$, 168.12; ESIMS m/z 341 $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 59.99$; H, 7.40. Found: C, 60.12; H, 7.27.

Typical Procedure for the Synthesis of 3a and 4a. A stirred mixture of 2a ($156 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{TFA})_{2}(8 \mathrm{mg}$, 0.025 mmol), AgOAc ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) and PivOH (306 $\mathrm{mg}, 3.0 \mathrm{mmol})$ in benzene $(2.35 \mathrm{~g}, 30 \mathrm{mmol})$ was heated to reflux under nitrogen atmosphere for 16 h . After cooling to room temperature, the reaction mixture was filtered over a pad of Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The filtrates were washed with a saturated solution of $\mathrm{NaHCO}_{3}(20$ $\mathrm{mL} \times 3$), and the organic layer was dried over MgSO_{4}. After removal of solvent and column chromatographic purification process (hexanes/acetone, 3:1) compound $\mathbf{3 a}$ (17 mg , 9%) and $\mathbf{4 a}(134 \mathrm{mg}, 69 \%)$ were isolated as colorless oils. Other compounds were synthesized similarly, and the spectroscopic data of $\mathbf{4 a - g}, \mathbf{3 a - c}, \mathbf{3 d}-Z, \mathbf{3 d}-E$, and $\mathbf{3 g}$ are as follows.

Compound 4a. 69\%; colorless oil; IR (film) 1734, 1624, 1495, 1450, 1435, 1261, 1213, 1052, 1025, $966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 4.01-4.14(\mathrm{~m}, 4 \mathrm{H}), 5.34\left(\mathrm{t}, J_{\mathrm{PH}}=2.1 \mathrm{~Hz}, J_{\mathrm{HH}}=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.42\left(\mathrm{dd}, J_{\mathrm{PH}}=14.1 \mathrm{~Hz}, J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14-7.18$ (m, 4H), 7.21-7.34 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $16.25\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 52.38,55.99\left(\mathrm{~d}, J_{\mathrm{PC}}=18.3 \mathrm{~Hz}\right)$, $62.02\left(\mathrm{~d}, J_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 122.56\left(\mathrm{~d}, J_{\mathrm{PC}}=184.9 \mathrm{~Hz}\right), 127.25$, $128.62,129.24,139.11,155.56\left(\mathrm{~d}, J_{\mathrm{PC}}=4.1 \mathrm{~Hz}\right), 167.86(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=9.7 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right) \delta 14.25$; ESIMS $m / z 389[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 64.94 ; \mathrm{H}$, 6.49. Found: C, 64.76; H, 6.71.

Compound 4b. 47\%; colorless oil; IR (film) 1734, 1260, 1213, 1053, 1025, $966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.06$ $(\mathrm{m}, 4 \mathrm{H}), 5.18\left(\mathrm{t}, J_{\mathrm{PH}}=2.1 \mathrm{~Hz}, J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.35(\mathrm{dd}$, $\left.J_{\mathrm{PH}}=14.1 \mathrm{~Hz}, J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.69(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$,

Scheme 4
7.06-7.10 (m, 2H), 7.13-7.26 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 16.23\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 21.25,52.36,55.91\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $17.8 \mathrm{~Hz}), 62.02\left(\mathrm{~d}, J_{\mathrm{PC}}=5.2 \mathrm{~Hz}\right), 122.27\left(\mathrm{~d}, J_{\mathrm{PC}}=185.5 \mathrm{~Hz}\right)$, $127.03,127.14,128.56,128.93,129.23,138.04,138.89$, $139.29,155.82\left(\mathrm{~d}, J_{\mathrm{PC}}=4.0 \mathrm{~Hz}\right), 167.94\left(\mathrm{~d}, J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right)$; ESIMS $m / z 417[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}$, 66.33; H, 7.02. Found: C, 66.28; H, 7.24.

Compound 4c. 46\%; colorless oil; IR (film) 1734, 1261, $1214,1053,1025,966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 4.03-4.14(\mathrm{~m}, 4 \mathrm{H}), 5.28\left(\mathrm{t}, J_{\mathrm{PH}}=1.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.44\left(\mathrm{dd}, J_{\mathrm{PH}}=14.1 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $16.27\left(\mathrm{~d}, J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 19.35,19.78,52.38,55.69\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $17.8 \mathrm{~Hz}), 62.05\left(\mathrm{~d}, J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 122.15\left(\mathrm{~d}, J_{\mathrm{PC}}=185.4 \mathrm{~Hz}\right)$, $126.50,127.13,128.59,129.22,129.82,130.52,135.57$, 136.40, 136.83, 139.46, $155.97\left(\mathrm{~d}, J_{\mathrm{PC}}=4.0 \mathrm{~Hz}\right), 168.00(\mathrm{~d}$, $J_{\mathrm{PC}}=9.7 \mathrm{~Hz}$); ESIMS m/z $417[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 66.33 ; \mathrm{H}, 7.02$. Found: C, 66.51; H, 7.19.
Compound 4d. 37\%; colorless oil; IR (film) 1735, 1259, $1215,1052,1028,967 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.96-4.07(\mathrm{~m}, 4 \mathrm{H})$, $5.21\left(\mathrm{t}, J_{\mathrm{PH}}=1.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.36\left(\mathrm{dd}, J_{\mathrm{PH}}=13.2\right.$ $\left.\mathrm{Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.96(\mathrm{dd}, J=8.4$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03-7.06 (m, 2H), 7.18-7.34 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 16.26\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 52.59,54.97\left(\mathrm{~d}, J_{\mathrm{PC}}=17.8\right.$ $\mathrm{Hz}), 62.20\left(\mathrm{~d}, J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 123.43\left(\mathrm{~d}, J_{\mathrm{PC}}=186.0 \mathrm{~Hz}\right)$, $127.75,128.53,128.92,129.08,130.59,131.12,131.55$, $132.81,138.01,139.49,154.20\left(\mathrm{~d}, J_{\mathrm{PC}}=4.6 \mathrm{~Hz}\right), 167.47(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right)$; ESIMS $m / z 457[\mathrm{M}+\mathrm{H}]^{+}, 459[\mathrm{M}+\mathrm{H}+2]^{+}, 461$ $[\mathrm{M}+\mathrm{H}+4]^{+}$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 55.16$; H , 5.07. Found: C, 55.45; H, 4.96.

Compound 4e. 63\%; colorless oil; IR (film) 1734, 1260, $1215,1053,1025,966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.06$ $(\mathrm{m}, 4 \mathrm{H}), 5.22\left(\mathrm{t}, J_{\mathrm{PH}}=1.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.34(\mathrm{dd}$, $\left.J_{\mathrm{PH}}=13.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.95-7.09(\mathrm{~m}, 6 \mathrm{H})$, 7.12$7.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.20\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 6.3 Hz), 20.94, $52.32,55.61\left(\mathrm{~d}, J_{\mathrm{PC}}=17.8 \mathrm{~Hz}\right), 61.97\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=5.8 \mathrm{~Hz}), 122.18\left(\mathrm{~d}, J_{\mathrm{PC}}=185.4 \mathrm{~Hz}\right), 127.12,128.54$, 129.04, 129.14, 129.29, 135.97, 136.84, 139.29, 155.81 (d, $\left.J_{\mathrm{PC}}=4.1 \mathrm{~Hz}\right), 167.89\left(\mathrm{~d}, J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right) ;$ ESIMS m/z 403 $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 65.66$; H, 6.76. Found: C, 65.58; H, 6.94.
Compound 4f. 68\%; colorless oil; IR (film) 1734, 1257, 1214, 1052, 1028, $966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.07$ $(\mathrm{m}, 4 \mathrm{H}), 5.21\left(\mathrm{t}, J_{\mathrm{PH}}=1.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.33(\mathrm{dd}$, $\left.J_{\mathrm{PH}}=14.1 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.26(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.21\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right)$, $52.33,55.12,55.22\left(\mathrm{~d}, J_{\mathrm{PC}}=17.8 \mathrm{~Hz}\right), 61.98\left(\mathrm{~d}, J_{\mathrm{PC}}=5.7\right.$ $\mathrm{Hz}), 113.98,122.05\left(\mathrm{~d}, J_{\mathrm{PC}}=185.5 \mathrm{~Hz}\right), 127.14,128.56$, $129.10,130.25,131.03,139.41,155.97\left(\mathrm{~d}, J_{\mathrm{PC}}=4.0 \mathrm{~Hz}\right)$, 158.64, $167.93\left(\mathrm{~d}, J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right)$; ESIMS $m / z 419[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{P}: \mathrm{C}, 63.15$; H, 6.50. Found: C,
63.46; H, 6.82.

Compound 4g. 60\%; colorless oil; IR (film) 1735, 1260, $1215,1006,983 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.17$ (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, $4.52-4.68(\mathrm{~m}, 2 \mathrm{H}), 5.26\left(\mathrm{t}, J_{\mathrm{PH}}=1.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.32\left(\mathrm{dd}, J_{\mathrm{PH}}=13.5 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07-7.10(\mathrm{~m}$, 4H), 7.14-7.27 (m, 6H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right) \delta 23.71$ $\left(\mathrm{d}, J_{\mathrm{PC}}=4.6 \mathrm{~Hz}\right), 23.98\left(\mathrm{~d}, J_{\mathrm{PC}}=4.0 \mathrm{~Hz}\right), 52.32,55.97\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=17.7 \mathrm{~Hz}), 70.67\left(\mathrm{~d}, J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 123.87\left(\mathrm{~d}, J_{\mathrm{PC}}=184.9\right.$ $\mathrm{Hz}), 127.22,128.59,129.27,139.25,154.80\left(\mathrm{~d}, J_{\mathrm{PC}}=4.6\right.$ $\mathrm{Hz}), 168.09\left(\mathrm{~d}, J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right)$; ESIMS m/z $417[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}$: C, 66.33; H, 7.02. Found: C, 66.16; H, 7.39 .

Compound 3a. 9\%; colorless oil; IR (film) 1718, 1261, 1156, 1053, 1026, $965 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.96\left(\mathrm{~d}, J_{\mathrm{PH}}=21.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 3.98-4.08(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.32(\mathrm{~m}$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.27\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right)$, $30.41\left(\mathrm{~d}, J_{\mathrm{PC}}=140.8 \mathrm{~Hz}\right), 51.56,61.96\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz}\right)$, $123.17\left(\mathrm{~d}, J_{\mathrm{PC}}=10.3 \mathrm{~Hz}\right), 127.67,127.89,128.11,128.15$, 128.42, 129.41, 139.77, 141.88, 149.44 (d, $J_{\mathrm{PC}}=13.2 \mathrm{~Hz}$), 170.08; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right) \delta$ 25.67; ESIMS m / z $389[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 64.94 ; \mathrm{H}, 6.49$. Found: C, 65.05; H, 6.34.

Compound 3b. 11\%; colorless oil; IR (film) 1718, 1256, $1109,1054,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.25$ (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.96\left(\mathrm{~d}, J_{\mathrm{PH}}=21.9 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.08(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H})$, 7.03-7.06 (m, 2H), 7.15-7.23 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 16.36\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 21.20,30.48\left(\mathrm{~d}, J_{\mathrm{PC}}=140.8\right.$ $\mathrm{Hz}), 51.57,61.93\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 122.95\left(\mathrm{~d}, J_{\mathrm{PC}}=10.3\right.$ $\mathrm{Hz})$, 127.01, 127.61, 127.88, 128.39, 129.78, 137.71, 139.74, 141.95, $149.86\left(\mathrm{~d}, J_{\mathrm{PC}}=13.1 \mathrm{~Hz}\right), 170.19$; ESIMS m/z 417 $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 66.33$; $\mathrm{H}, 7.02$. Found: C, 66.54; H, 7.07.

Compound 3c. 13\%; colorless oil; IR (film) 1718, 1265, 1053, 1026, $965 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.25$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.99\left(\mathrm{~d}, J_{\mathrm{PH}}=\right.$ $21.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.08(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.06(\mathrm{~m}$, $5 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 3 \mathrm{H}) \mathrm{HHh} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $16.35\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 19.50,19.65,30.54\left(\mathrm{~d}, J_{\mathrm{PC}}=140.4\right.$ $\mathrm{Hz}), 51.54,61.96\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz}\right), 122.68\left(\mathrm{~d}, J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right)$, 126.97, 127.59, 127.87, 128.48, 129.41, 130.53, 136.38, 136.73, 137.39, 142.19, 149.86 (d, $J_{\mathrm{PC}}=12.6 \mathrm{~Hz}$), 170.30; ESIMS m/z $417[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}$, 66.33; H, 7.02. Found: C, 66.39; H, 6.89.

Compound 3d-Z. 14\%; colorless oil; IR (film) 1720, 1271, 1052, 1028, $967 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.93\left(\mathrm{~d}, J_{\mathrm{PH}}=22.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.39(\mathrm{~s}$, $3 \mathrm{H}), ~ 4.00-4.10(\mathrm{~m}, 4 \mathrm{H}), 6.99-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}$, $4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.36\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 30.64(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=141.4 \mathrm{~Hz}\right), 51.78,62.23\left(\mathrm{~d}, J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 124.58(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=10.3 \mathrm{~Hz}\right), 128.20(2 \mathrm{C}), 128.48,129.07,130.30,131.42$, $132.50,132.56,139.63,140.93$, $146.95\left(\mathrm{~d}, J_{\mathrm{PC}}=12.6 \mathrm{~Hz}\right)$, 169.70; ESIMS m/z $457[\mathrm{M}+\mathrm{H}]^{+}, 459[\mathrm{M}+\mathrm{H}+2]^{+}, 461$ $[\mathrm{M}+\mathrm{H}+4]^{+}$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 55.16 ; \mathrm{H}$,

5.07. Found: C, 55.34; H, 5.22.

Compound 3d-E. 48\%; colorless oil; IR (film) 1721, $1269,1053,1028,966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.95\left(\mathrm{~d}, J_{\mathrm{PH}}=21.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.48(\mathrm{~s}$, $3 \mathrm{H}), 3.98-4.08(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{dd}, J=8.4$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.33\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 30.51\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $140.9 \mathrm{~Hz}), 51.92,62.12\left(\mathrm{~d}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 124.72\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $10.3 \mathrm{~Hz}), 127.87,128.49,128.62$, 129.37, 129.96, 130.33, $131.94,132.23,138.82,141.78,147.00\left(\mathrm{~d}, J_{\mathrm{PC}}=12.6 \mathrm{~Hz}\right)$, 169.37; ESIMS m/z $457[\mathrm{M}+\mathrm{H}]^{+}, 459[\mathrm{M}+\mathrm{H}+2]^{+}, 461$ $[\mathrm{M}+\mathrm{H}+4]^{+}$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 55.16 ; \mathrm{H}$, 5.07. Found: C, 55.43; H, 5.31.

Compound 3g. 6\%; colorless oil; IR (film) 1719, 1259, 1006, $984 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.22(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.92\left(\mathrm{~d}, J_{\mathrm{PH}}=22.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 4.57-4.72(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.05(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.35 (m, 8H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.85(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=4.6 \mathrm{~Hz}\right), 24.01\left(\mathrm{~d}, J_{\mathrm{PC}}=4.0 \mathrm{~Hz}\right), 31.84\left(\mathrm{~d}, J_{\mathrm{PC}}=142.5\right.$ $\mathrm{Hz}), 51.52,70.65\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 123.72\left(\mathrm{~d}, J_{\mathrm{PC}}=10.4\right.$ $\mathrm{Hz}), 127.59,127.90$, 128.04, 128.09, 128.49, 129.62, $139.85,142.07,148.75\left(\mathrm{~d}, J_{\mathrm{PC}}=12.6 \mathrm{~Hz}\right), 170.11$; ESIMS $m / z 417[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 66.33 ; \mathrm{H}$, 7.02. Found: C, 66.17; H, 7.34.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1B3000541). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For some selected Pd-catalyzed chelation-assisted arylation of olefins with arenes, see: (a) Li, Z.; Zhang, Y.; Liu, Z.-Q. Org. Lett. 2012, 14, 74. (b) Zhang, Y.; Li, Z.; Liu, Z.-Q. Org. Lett. 2012, 14, 226. (c) Shang, X.; Xiong, Y.; Zhang, L.; Liu, Z.-Q. Synlett 2012, 259. (d) Pan, D.; Yu, M.; Chen, W.; Jiao, N. Chem. Asian J. 2010, 5, 1090. (e) Pan, D.; Jiao, N. Synlett 2010, 1577 and further references cited therein.
2. For some selected Pd-catalyzed chelation-assisted arylation of olefins with aryl halides, arylboronic acids, and arenediazonium salts, see: (a) Skold, C.; Kleimark, J.; Trejos, A.; Odell, L. R.; Nilsson Lill, S. O.; Norrby, P.-O.; Larhed, M. Chem. Eur. J. 2012, 18, 4714. (b) Guo, H.-M.; Rao, W.-H.; Niu, H.-Y.; Jiang, L.-L.; Liang, L.; Zhang, Y.; Qu, G.-R. RSC Adv. 2011, 1, 961. (c) Yahiaoui, S.; Fardost, A.; Trejos, A.; Larhed, M. J. Org. Chem. 2011, 76, 2433. (d) Prediger, P.; Barbosa, L. F.; Genisson, Y.; Correia, C. R. D. J. Org. Chem. 2011, 76, 7737. (e) Trejos, A.; Fardost, A.; Yahiaoui, S.; Larhed, M. Chem. Commun. 2009, 7587. (f) Su, Y.; Jiao, N. Org. Lett. 2009, 11, 2980. (g) Datta, G. K.; Nordeman, P.; Dackenberg, J.; Nilsson, P.; Hallberg, A.; Larhed, M. Tetrahedron: Asymmetry 2008, 19, 1120. (h) Datta, G. K.; Larhed, M. Org. Biomol. Chem. 2008, 6, 674. (i) Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc. 2008, 130, 11270. (j) Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J. Liu, Q.; Zhang, L. Jiao, N. Angew. Chem. Int. Ed. 2008, 47, 4729. (k) Svennebring, A.; Nilsson, P.; Larhed, M. J. Org. Chem. 2004, 69, 3345. (1) Llamas, T.; Arrayas, R. G.; Carretero, J. C. Adv. Synth. Catal. 2004, 346, 1651. (m) Nilsson, P.; Larhed,
M.; Hallberg, A. J. Am. Chem. Soc. 2003, 125, 3430. (n) Mauleon, P.; Nunez, A. A.; Alonso, I.; Carretero, J. C. Chem. Eur. J. 2003, 9, 1511. (o) Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217. (p) Mauleon, P.; Alonso, I.; Carretero, J. C. Angew. Chem. Int. Ed. 2001, 40, 1291.
3. Very recently, we reported an efficient synthesis of fully-substituted cinnamates via palladium-catalyzed chelation-assisted oxidative arylation with arenes, see: Lee, H. S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Adv. Synth. Catal. 2012, 354, 2419 and further references cited therein.
4. For the synthesis of cinnamylphosphonates, see: (a) Basavaiah, D.; Pandiaraju, S. Tetrahedron 1996, 52, 2261. (b) Das, B.; Bhunia, N.; Damodar, K. Synth. Commun. 2012, 42, 2479. (c) Janecki, T.; Bodalski, R. Synthesis 1990, 799. (d) Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9, 3619. (e) Ho, C.-Y.; Chan, C.-W.; Wo, S.-K.; Zuo, Z.; Chan, L.-Y. Org. Biomol. Chem. 2010, 8, 3480.
5. For our recent contributions on the palladium-catalyzed arylation with arenes under the influence of $\mathrm{AgOAc} / \mathrm{PivOH}$, see: (a) Kim, K. H.; Lee, S.; Kim, S. H.; Lim, C. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 5088. (b) Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6228. (c) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 2761. (d) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 1323. The condition employing PivOH as a proton shuttle during the aryl C-H bond activation was originally developed by Fagnou and applied extensively for the C-H bond activation of arenes, see: (e) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. (f) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (g) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (h) Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022. (i) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658. (j) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676. (k) Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 8138. (1) Potavathri, S.; Kantak, A. DeBoef, B. Chem. Commun. 2011, 47, 4679.
6. For the synthesis of alkenylphosphonates, see: (a) Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179. (b) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P. Synlett 2009, 2375. (c) Konno, T.; Kinugawa, R.; Morigaki, A.; Ishihara, T. J. Org. Chem. 2009, 74, 8456. (d) Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637. (e) Mei, Y.-Q.; Liu, J.-T. Tetrahedron 2008, 64, 8801. (f) Quntar, A.; Rosenthal, D.; Srebnik, M. Tetrahedron 2006, 62, 5995. (g) Ben-Valid, S.; Quntar, A.; Srebnik, M. J. Org. Chem. 2005, 70, 3554. (h) Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681. (i) Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080. (j) Maffei, M.; Buono, G. Tetrahedron 2003, 59, 8821. (k) Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 729. (1) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315. (m) Quntar, A.; Melman, A.; Srebnik, M. J. Org. Chem. 2002, 67, 3769. (n) Chatterjee, A. K.; Choi, T.-L.; Grubbs, R. H. Synlett 2001, 1034. (o) Zhao, C.-Q.; Han, L.-B.; Goto, M.; Tanaka, M. Angew. Chem. Int. Ed. 2001, 40, 1929. (p) Pergament, I.; Srebnik, M. Org. Lett. 2001, 3, 217. (q) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571. (r) Burini, A.; Cacchi, S.; Pace, P.; Pietroni, B. R. Synlett 1995, 677.
7. For the synthetic applications of alkenylphosphonates, see: (a) Rabasso, N.; Fadel, A. Tetrahedron Lett. 2010, 51, 60. (b) Cullen, S. C.; Rovis, T. Org. Lett. 2008, 10, 3141. (c) Yan, B.; Spilling, C. D. J. Org. Chem. 2004, 69, 2859. (d) Rowe, B. J.; Spilling, C. D. J. Org. Chem. 2003, 68, 9502. (e) Inoue, H.; Tsubouchi, H.; Nagaoka, Y.; Tomioka, K. Tetrahedron 2002, 58, 83. (f) Fray, A.; Kraiem, J. B.; Souizi, A.; Amri, H. ARKIVOC 2012 (viii) 119.
8. For the synthesis of alkenylphosphonates via a Pd-catalyzed arylation, see: (a) Tarabay, J.; Al-Maksoud, W.; Jaber, F.; Pinel, C.; Prakash, S.; Djakovitch, L. Appl. Catal. A: Gen. 2010, 388,
9. (b) Sajna, K. V.; Srinivas, V.; Kumara Swamy, K. C. Adv. Synth. Catal. 2010, 352, 3069. (c) Al-Maksoud, W.; Mesnager, J.; Jaber, F.; Pinel, C.; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222. (d) Ma, S.; Guo, H.; Yu, F. J. Org. Chem. 2006, 71, 6634. (e) Chakravarty, M.; Kumara Swamy, K. C. J. Org. Chem. 2006, 71, 9128. (f) Kabalka, G. W.; Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685. (g) Brunner, H.; Le Cousturier de Courcy, N.; Genet, J.-P. Synlett 2000, 201. (h) Xu, Y.; Jin, X.; Huang, G.; Huang, Y. Synthesis 1983, 556.
10. For the biologically important alkenylphosphonates, see: (a) Lu , X.; Sun, C.; Valentine, W. J.; E, S.; Liu, J.; Tigyi, G.; Bittman, R. J. Org. Chem. 2009, 74, 3192. (b) Kuemin, M.; van der Donk, W.
A. Chem. Commun. 2010, 46, 7694. (c) Quntar, A.; Baum, O.; Reich, R.; Srebnik, M. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 76. (d) Delomenede, M.; Bedos-Belval, F.; Duran, H.; Vindis, C.; Baltas, M.; Negre-Salvayre, A. J. Med. Chem. 2008, 51, 3171 .
11. For a base-catalyzed rearrangement of alkenylphosphonate to allylphosphonate, see: (a) Kiddle, J. J.; Babler, J. H. J. Org. Chem. 1993, 58, 3572. (b) Modro, A. M.; Modro, T. A. Can. J. Chem. 1988, 66, 1541. (c) Solberghe, G. F.; Marko, I. E. Tetrahedron Lett. 2002, 43, 5061. (d) Shen, R.; Jiang, X.; Ye, W.; Song, X.; Liu, L.; Lao, X.; Wu, C. Tetrahedron 2011, 67, 5610.
