DOI QR코드

DOI QR Code

Pressure Drop due to Friction in Small Rectangular Channel

미소 사각 채널에서의 마찰 압력 강하

  • Lim, Tae-Woo (Division of Marine Engineering, Korea Maritime University) ;
  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime University) ;
  • Kim, Jun-Hyo (Division of Marine System Engineering, Mokpo National Maritime University) ;
  • Choi, Yong-Suk (Graduate School, Division of Marine Engineering, Korea Maritime University)
  • 임태우 (한국해양대학교 기관공학부) ;
  • 최재혁 (한국해양대학교 기관시스템공학부) ;
  • 김준효 (목포해양대학교 기관시스템공학부) ;
  • 최용석 (한국해양대학교 기관공학부 대학원)
  • Received : 2012.06.15
  • Accepted : 2012.10.26
  • Published : 2012.10.31

Abstract

An experimental study was carried out to measure frictional pressure drop in flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were performed in the ranges of heat fluxes from 100 to $400kW/m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and $600kg/m^2s$. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. From the experimental results, it is found that the two phase multiplier decreases with an increase in mass flux. Measured data of pressure drop are compared to a few available correlations proposed for macroscale and mini/microscale. The homogeneous model well predicted frictional pressure drop within MAE of 29.4 % for the test conditions considered in this work.

$500{\mu}m$의 수력직경을 가진 마이크로 채널에서 유동 비등 시 물에 대한 마찰 압력 강하를 측정하기 위한 실험적 연구를 수행하였다. 실험은 열 유속 $100-400kW/m^2$, 증기건도 0-0.2 그리고 질량 유속 $200-600kg/m^2s$의 범위에서 이루어졌다. 유동 비등 시 마찰 압력 강하는 두 가지 모델을 사용하여 예측된다. 즉, 두 상의 속도가 동일하다고 가정한 균질 모델과 두 상 사이에 서로 다른 속도를 가지는 분리류 모델로 분류된다. 실험결과 이상 마찰 승수는 질량 유속이 증가함에 따라 감소한다는 것을 알 수 있었다. 측정된 압력 강하 데이터는 매크로 스케일과 미니/마이크로 스케일에서 제안된 기존의 여러 상관식들과 비교하였다. 균질 모델은 본 연구에서 고려한 실험 조건에서 29.4 %의 평균 오차내에서 마찰 압력 강하를 예측하였다.

Keywords

References

  1. Chisholm, D.(1967), A Theoretical Basis for the Lockhard -Martinelli Correlation for Two-Phase Flow, International Journal of Heat and Mass Transfer 10, pp. 1767-1778. https://doi.org/10.1016/0017-9310(67)90047-6
  2. Chisholm, D.(1983), Two-phase Flow in Pipelines and Heat Exchangers, Longman, New York, pp. 26-113.
  3. Collier, J. G. and J. R. Thome(1994), Convective Boiling and Condensation, 3rd Edition. Oxford University Press, London, pp. 34-130.
  4. Friedel, L.(1979), Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow, Presented at the European Two-phase Flow Group Meeting, Ispra, Italy, Paper E2, June, Vol.18, pp. 485-492.
  5. Kawahara, A., P. M. Y. Chung and M. Kawaji(2002), Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel, International Journal of Multiphase Flow 28, pp. 1411-1435. https://doi.org/10.1016/S0301-9322(02)00037-X
  6. Lee, P. S. and S. V. Garimella(2008), Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays, International Journal of Heat and Mass Transfer 51, pp. 789-806. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.019
  7. Lee, P. S., S. V. Garimella and D. Liu(2005), Investigation of heat transfer in rectangular microchannels, International Journal of Heat and Mass Transfer 48, pp. 1688-704. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019
  8. Lockhart, R. W., and R. C. Martinelli(1949), Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Engng. Prog. Vol. 45, pp. 39-48.
  9. Mishan, Y., A. Mosyak, E. Pogrebnyak and G. Hetsroni(2007), Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink, International Journal of Heat and Mass Transfer 50, pp. 3100-3114. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.003
  10. Peng, X. F., G. P. Peterson and B. X. Wang(1994). Frictional flow characteristics of water flowing through rectangular microchannels, Experimental Heat Transfer 7, pp. 249-264. https://doi.org/10.1080/08916159408946484
  11. Shah, R. K. and A. L. London(1978), Laminar Flow Forced Convection in Ducts, Adv. Heat Transfer, Supplement 1, Academic Press, New York, pp. 196-247.
  12. Steinke, M. E. and S. G. Kandlikar(2006), Single-phase liquid friction factors in microchannels, International, Journal of Thermal Sciences 45, pp. 1073-1083. https://doi.org/10.1016/j.ijthermalsci.2006.01.016
  13. Tran, T. N., M. C. Chyu, M. W. Wambsganss and D. M. France(2000), Two-phase pressure drop of refrigerants during flow boiling in small channels: and experimental investigation and correlation development, International Journal of Multiphase Flow 26, pp. 1739-1754. https://doi.org/10.1016/S0301-9322(99)00119-6
  14. Wang, B. X. and X. F. Peng(1994), Experimental investigation on liquid forced convection heat transfer through microchannels, International Journal of Heat and Mass Transfer 37(suppl.1), pp. 73-82. https://doi.org/10.1016/0017-9310(94)90011-6
  15. Zhang, M. and R. L. Webb(2001), Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp. Therm. Fluid Sci. 25, pp. 131-139. https://doi.org/10.1016/S0894-1777(01)00066-8

Cited by

  1. CFD Analysis on the Channel Shapes of Parallel Micro-Channels vol.25, pp.5, 2013, https://doi.org/10.13000/JFMSE.2013.25.5.1102
  2. CFD Validation of Solid-Liquid Two-Phase flow for Analysis of Drilling Fluid Flow Characteristics vol.24, pp.5, 2018, https://doi.org/10.7837/kosomes.2018.24.5.611