DOI QR코드

DOI QR Code

A Study on Synthesis of Carbon Nanomaterial as a Material for Eco-ship

친환경 선박용 재료인 탄소나노물질의 합성에 관한 연구

  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime University) ;
  • Kim, Jae-Hyun (Graduate School of Marine System Engineering, Korea Maritime University) ;
  • Shin, Woo-Jung (Graduate School of Marine System Engineering, Korea Maritime University) ;
  • Choi, Jung-Sik (Graduate School of Marine System Engineering, Korea Maritime University) ;
  • Ryu, Kyoung-Boo (Korean Register of shjpping) ;
  • Lee, Sang-Min (Korea Institute of machinery & materials) ;
  • Park, Seol-Hyun (Korea Aerospace Research Institute) ;
  • Lee, Joo-Hee (Korea Aerospace Research Institute) ;
  • Lim, Tae-Woo (Division of Marine Engineering, Korea Maritime University)
  • Received : 2012.07.11
  • Accepted : 2012.10.26
  • Published : 2012.10.31

Abstract

In this study, experimental studies were performed for the carbon nanomaterial(CNM) which is catching on as a material for eco-ship. The opposed-flow methane flame was used as a heat source for synthesis of CNM. Ferrocene was used as a catalyst for the synthesis of CNM. These major parameters were $H_2$ mixing rate and sampling positions that synthesize CNMs in opposed-flow diffusion flames. The propensities of CNMs were experimentally determined using SEM and TEM images. The experimental result showed that the amount of CNTs was increased with increasing $H_2$ concentration. It can also be found that the optimal temperature in opposed-flow methane flame for synthesis of CNT was about 1500 K.

이 연구에서는 친환경 선박용 재료로 각광받는 탄소나노물질에 대하여 실험적 연구를 수행하였다. 탄소나노물질의 합성을 위한 열원으로서는 대향류 메탄 화염을 이용하였다. 탄소나노물질 합성을 위한 촉매로서는 페로센을 사용하였다. 합성 특성을 파악하기 위한 주요 파라메타로는 대향류 메탄 화염에 수소의 혼합 비율과 샘플링 위치를 변화시켰다. 탄소나노물질의 성향은 SEM과 TEM 이미지를 이용하여 결정되었다. 실험 결과로서는 수소의 혼합 비율이 증가할수록 탄소나노물질의 생성이 잘 이루어졌다. 또한 대향류 메탄 확산화염 내 탄소나노튜브의 생성을 위한 적정 온도로는 1500 K 정도가 적당하다는 것을 알 수 있었다.

Keywords

References

  1. 김동주, 김교선(2007), 기상 공정에 의한 나노 미립자 제조, 한국화학공학회지, 제45권, 제6호, pp. 536-546.
  2. 류승철, 석중현, 한종훈(2009), 탄소나노튜브 합성 개발 동향, KIC News, 제12권, 제4호, pp. 1-12.
  3. 박수진(2006), 탄소재료 원리와 응용, 대영사. pp. 225-316.
  4. 이교우, 정종수, 강경태, 황정호(2004), 화염합성 시의 탄소나노튜브와 나노섬유의 생성 및 성장 메커니즘, 한국연소학회지, Vol. 9, pp. 18-24.
  5. 투데이 에너지(2012), KR, 선박용 나노필터시스템 개발, 송명규 기자, http://www.todayenergy.kr/news/articleView.html?idxno=70649.
  6. Gorbunov, A., O. Jost, W. Pumpe and A. Graff(2002), Solid-liquid-solid growth mechanism of single-wall carbon nanotubes, Carbon, Vol. 40, pp. 113-118. https://doi.org/10.1016/S0008-6223(01)00080-X
  7. Hu, W., D. Gong, Z. Chen, L. Yuan, K. Saito, C. A. Grimes and P. Kichambare(2001), Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate, Appl. Phys. Lett., Vol. 79, pp. 3083-3085. https://doi.org/10.1063/1.1415406
  8. Li, T. X., H. G. Zhang, F. J. Wang, Z. Chen and K. Saito(2007), Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane-air diffusion flames, Proc. Combust. Inst., Vol. 31, pp. 1847-1859.
  9. Mamalis, A. G, L. O. G. Vogtlander and A. Markopoulos (2004), Nanotechnology and nanostructured materials: trends in carbon nanotubes, Precision Engineering, Vol. 28, pp. 16-30. https://doi.org/10.1016/j.precisioneng.2002.11.002
  10. Saveliev, A. V., W. Merchan-Merchan and L. A. Kennedy (2003), Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame, Combust. Flame, Vol. 135, pp. 27-33. https://doi.org/10.1016/S0010-2180(03)00142-1
  11. Vander Wal, R. L., T. M. Ticich and V. E. Curtis(2000), Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett., Vol. 323, pp. 217-223. https://doi.org/10.1016/S0009-2614(00)00522-4
  12. Yuan, L., T. Li and K. Saito(2003), Growth mechanism of carbon nanotubes in methane diffusion flames, Carbon, Vol. 41, pp. 1889-1896. https://doi.org/10.1016/S0008-6223(03)00204-5

Cited by

  1. Effect of Acetylene Mixing Rate on Synthesis of Carbon Nanotube vol.20, pp.6, 2014, https://doi.org/10.7837/kosomes.2014.20.6.768
  2. A numerical study on soot formation in ethylene diffusion flames under 1g and 0g vol.37, pp.8, 2013, https://doi.org/10.5916/jkosme.2013.37.8.807