• Title/Summary/Keyword: Vapor quality

Search Result 589, Processing Time 0.027 seconds

R-22 Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 응축에 관한 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.241-250
    • /
    • 2000
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the followin~ range of variables ; vapor quality($0.1{\sim}0.9$), mass flux($200{\sim}600kg/m^2s$) and heat flux($5{\sim}15kW/m^2$). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased as the vapor quality increased. Surface tension force acting on the micro-fin surface at the high vapor quality is believed to be responsible. Different from the trends of the smooth tube, where the heat transfer coefficient increased as the mass flux increased, the heat transfer coefficient of the micro-fin tube was independent of the mass flux at high vapor quality, which implies that the surface tension effect on the fin overwhelms the vapor shear effect at the high vapor quality. Present data(except those at low mass flux and high quality) were well correlated by equivalent Reynolds number, Existing correlations overpredicted the present data at high mass flux.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow (과냉 비등류의 실제건도와 보이드율에 관한 연구)

  • Kim, J.H.;Kim, C.S.;Kim, K.K.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.

An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

판각형 열교환기 내의 R-22 증발 압력강하 특성에 관한 실험적 연구

  • 서무교;박재홍;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.930-938
    • /
    • 2001
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by adding three plates having a corrugated channel of a chevron angle of $45^{\circ}$. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop increases with the vapor quality for both types of P&SHE. At a higher mass flux, the pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower.

  • PDF

Study on Evaporation Pressure Drop of R- l34a, R-407C, and R-410A in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 증발 압력강하에 관한 실험적 연구)

  • 박재홍;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.855-862
    • /
    • 2004
  • This study reports pressure drops during evaporation for R-l34a, R-407C (a mixture of 23 wt% R-32, 25 wt% R-125, and 52 wt% R-l34A) and R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) in the oblong shell and Plate heat exchanger. The effects of the mass fluxes, heat fluxes, refrigerant saturation temperatures and vapor quality of refrigerants on the measured data were explored in detail. The present data showed that pressure drops of all refrigerants increase with the vapor quality. At a higher mass flux, pressure drops are higher for the entire range of the vapor quality A rise in the heat flux doesn't show significant effects on the pressure drops. Finally, at a higher saturation temperature the pressure drops are found to be lower. The pressure drops for R-407C were approximately 20% lower than those of R-l34a. R-410A had 33% lower pressure drops than R-l34a. Correlation is also provided for the measured pressure drops in terms of the friction factor.

Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides

  • Song, Jeong-Gyu;Park, Kyunam;Park, Jusang;Kim, Hyungjun
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.119-125
    • /
    • 2015
  • Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique and exotic properties attributed to their low dimensionality. In particular, semiconducting 2D TMDCs such as $MoS_2$, $WS_2$, $MoSe_2$, and $WSe_2$ have been demonstrated to be feasible for various advanced electronic and optical applications. In these regards, process to synthesize high quality 2D TMDCs layers with high reliability, wafer-scale uniformity, controllable layer number and excellent electronic properties is essential in order to use 2D TMDCs in practical applications. Vapor deposition techniques, such as physical vapor deposition, chemical vapor deposition and atomic layer deposition, could be promising processes to produce high quality 2D TMDCs due to high purity, thickness controllability and thickness uniformity. In this article, we briefly review recent research trend on vapor deposition techniques to synthesize 2D TMDCs.

Graphene Synthesized by Plasma Enhanced Chemical Vapor Deposition at Low-Temperature

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.248-248
    • /
    • 2012
  • Synthesis graphene on Cu substrate by plasma-enhanced chemical vapor deposition (PE-CVD) is investigated and its quality's affection factors are discussed in this work. Compared with the graphene synthesized at high temperature in chemical vapor deposition (CVD), the low-temperature graphene film by PE-CVD has relatively low quality with many defects. However, the advantage of low-temperature is also obvious that low melting point materials will be available to synthesize graphene as substrate. In this study, the temperature will be kept constant in $400^{\circ}C$ and the graphene was grown in plasma environment with changing the plasma power, the flow rate of precursors, and the distance between plasma generator coil and substrates. Then, we investigate the effect of temperature and the influence of process variables to graphene film's quality and characterize the film properties with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF