DOI QR코드

DOI QR Code

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes

토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO2와 CH4 방출 특성

  • Lim, Sang-Sun (Department of Rural & Biosystems Engineering, Chonnam National University) ;
  • Choi, Woo-Jung (Department of Rural & Biosystems Engineering, Chonnam National University) ;
  • Kim, Han-Yong (Department of Applied Plant Science, Chonnam National University)
  • 임상선 (전남대학교 지역.바이오시스템공학과) ;
  • 최우정 (전남대학교 지역.바이오시스템공학과) ;
  • 김한용 (전남대학교 식물생명공학부)
  • Received : 2012.05.18
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.

논 생태계를 모의하여 토양에 투입된 비료의 종류(AS, PMC, HV)와 토양 수분 변동조건(습윤기간, 전이기간, 건조 기간)으로 구분하여 $CH_4$$CO_2$ 플럭스를 조사하였다. $CH_4$ 플럭스는 0~13.8 mg $CH_4$/m/day의 범위에서 변화하였으 며, 시기적으로 습윤기간 초기와 전이기간과 건조기간 경계 시점에서 높은 값을 보였다. $CO_2$ 플럭스는 습윤 초기에 최대 치를 보이고 지속적으로 감소하다가 전이기간에 다시 상승하 였다. 최종토양의 탄소함량 변화는 대조구에서-5.4%이었고, 비료 처리구에서는-7.5~-16.4%이었다. HV 시용은 타 비종 에 비해 $CH_4$$CO_2$ 플럭스를 증가시켰는데, 이는 녹비작물 이 가축분 퇴비에 비해 상대적으로 이분해성으로 배양 초기 에 유기물 분해에 의해 $CH_4$$CO_2$ 발생량이 높았기 때문이 다. AS나 PMC 처리구에서 $CH_4$ 플럭스가 대조구에 비해 낮았는데, 이는 AS의 ${SO_4}^{2-}$와 퇴비에 함유된 산화형 물질($Fe^{3+}$, $Mn^{4+}$, ${NO_3}^-$)과 같은 전자 수용체에 의해 습윤기간 중 이들 물질이 전자수용체로 활용되어 $CH_4$ 생성이 감소할 수 있음 을 의미한다. PMC와 HV의 탄소 손실률을 비교하면, HV와 같은 이분해성 유기물에 비해 PMC와 같은 난분해성 유기물 의 시용이 토양 탄소량을 증가시키는 것으로 나타났다. 또한, 본 연구는 HV와 같은 녹비 작물이 질소 공급의 측면에서 화 학비료를 대체할 수 있지만, 화학비료 시용에 비해 $CH_4$ 발생 이 증가할 수 있음을 제시한다. 따라서, 이분해성 유기물(녹비 작물)과 난분해성 유기물(가축분퇴비)을 혼합 시용할 경우 양 분공급과 탄소저장량 증대에 모두 유리할 것으로 기대된다.

Keywords

References

  1. Ajawa, H.A., Tabatabai, M.A., 1994. Decomposition of different organic materials in soils. Biol. Fertil. Soils 18, 175-182. https://doi.org/10.1007/BF00647664
  2. Ali, M.A., Lee, C.H. Kim, S.Y., Kim, P.J., 2009. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manage. 29, 2759-2764. https://doi.org/10.1016/j.wasman.2009.05.018
  3. Alluvione, F., Bertora, C., Zavattaro, L., Grignani, C., 2010. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci. Soc. Am. J. 74, 384-395. https://doi.org/10.2136/sssaj2009.0092
  4. Bedard C., Knowles, R., 1989. Physiology, biochemistry, and specific inhibitors of $CH_4$, ${NH_4}^+$, and CO oxidation by methanotrophs and nitrifiers. Microbiological reviews 68-84.
  5. Bernal, M.P., Sanchez-Mondedero, M.A., Paredes, C., Roig, A., 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric. Ecosyst. Environ. 69, 175-189. https://doi.org/10.1016/S0167-8809(98)00106-6
  6. Blanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci. 23, 481-504. https://doi.org/10.1080/07352680490886842
  7. Bronson, K.F., Singh, U., Neue, H.U., Jr. Abao, E.B., 1997. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil, I. Residue, nitrogen, and water management. Soil Sci. Soc. Am. J. 61, 981-987. https://doi.org/10.2136/sssaj1997.03615995006100030038x
  8. Chen, R., Lin, X., Wang, Y., Hu, J., 2011. Mitigating methane emissions from irrigated paddy fields by application of aerobically composted livestock manures in eastern China. Soil Use Manage. 27, 103-109. https://doi.org/10.1111/j.1475-2743.2010.00316.x
  9. Choi, W.J., Matushima, M., Ro, H.M., 2011. Sensitivity of soil $CO_2$ emission to fertilizer nitrogen species: Urea, ammonium sulfate, potassium nitrate, and ammonium nitrate. J. Korean Soc. Appl. Biol. Chem. 54, 1004-1007. https://doi.org/10.1007/BF03253193
  10. Chu, H., Hosen, Y., Yagi, K,. 2007. NO, $N_2O$, $CH_4$ and $CO_2$ fluxes in winter barely field of Japanese Andisol as affected by N fertilizer management. Soil Biol. Biochem. 39, 330-339. https://doi.org/10.1016/j.soilbio.2006.08.003
  11. Dalal, R.C. Allen, D.E., Livesley, S.J., Richards, G., 2008. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309, 43-76. https://doi.org/10.1007/s11104-007-9446-7
  12. Denmead, O.T., 1995. Novel meterological methods for measuring trace gas fluxes. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 351, 383-396. https://doi.org/10.1098/rsta.1995.0041
  13. Ellert, B.H., Janzen, H.H., 2008. Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can. J. Soil SCi. 88, 207-217. https://doi.org/10.4141/CJSS06036
  14. Franzluebbers, K., Weaver, R.W., Juo, A.S.R., Franzluebbers, A.J., 1994. Carbon and nitrogen mineralization from cowpea plants part decomposition in moist and in repeatedly dried and wetted soil. Soil Biol. Biochem. 26, 1379-1387. https://doi.org/10.1016/0038-0717(94)90221-6
  15. Fog, K., 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Review 63, 433-462. https://doi.org/10.1111/j.1469-185X.1988.tb00725.x
  16. Galang, J.S., Zipper, C.E., Prisley, S.P., Galbraith, J.M., Donovan, P.F., 2007. Evaluating terrestrial carbon sequestration options for virginia. Environ. Manage. 39, 139-150. https://doi.org/10.1007/s00267-005-0368-y
  17. Gee, G.W., Bauder, J.W., 1986. Particle size analysis. p. 383-412. In Campbell, G.S. et al., (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. ASA and SSSA, Madison, Wi, USA.
  18. Gil, M.V., Carballo, M.T., Calvo, L.F., 2008. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manage. 28, 1432-1440. https://doi.org/10.1016/j.wasman.2007.05.009
  19. Hou, A.X., Wang, Z.P., Chen, G.X., Patrick Jr., H., 2000. Effects of organic and N fertilizers on methane production potential in a Chinese rice soil and its microbiological aspect. Nutr. Cycl. Agroecosys. 58, 333-338. https://doi.org/10.1023/A:1009875509876
  20. Hutsch, B.W., 1998. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol. Fertil. Siols 28, 27-35. https://doi.org/10.1007/s003740050459
  21. Intergovernmental Panel on Climate Change (IPCC). 2007. Mitigation. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge.
  22. Iqbal, J., Hu, R., Lin, S., Hatano, R., Feng, M., Lu, L., Ahamadou, B., Du, L., 2009. $CO_2$ emission in a subtropical red paddy soil (Ultisol) as affected by straw and N fertilizer application: A case study in Southern China. Agr. Ecosyst. Environ. 131, 292-302. https://doi.org/10.1016/j.agee.2009.02.001
  23. Jastrow, J.D., Amonette, E.J., Bailey, V.L., 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5-23. https://doi.org/10.1007/s10584-006-9178-3
  24. Keeney, D.R., Nelson, D.W., 1982. Nitrogen-inorganic form. p. 643-698. In Page Al (ed.) Methods of soil analysis. part 2. Chemical and microbiological properties, ASA and SSSA, Madison, USA.
  25. Kim. J.G., Lee, K.B., Lee, S.B., Lee, D.B., Kim, S.J., 2000. The effect of long-term application of different organic material sources on chemical properties of upland soil. Korean J. soil Sci. Fert. 33, 416-431.
  26. Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J.M., Riha, S., Verchot, L., Rcha, J.W., Pell, A.N., 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11, 726-739. https://doi.org/10.1007/s10021-008-9154-z
  27. Lee, C.H., Park, K.D., Jung, K.Y., Ali, M.A., Lee, D., Gutierrez, J., Kim, P.J., 2010. Effect of chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agric. Ecosyst. Environ . 138, 343-347. https://doi.org/10.1016/j.agee.2010.05.011
  28. Lee, S.I., Lim, S.S., Lee, K.S., Kwak, J.H., Jung, J.W., Ro, H.M., Choi, W.J., 2011. Kinetic responses of soil carbon dioxide emission to increasing urea application rate. Korean J. Environ. Agric. 30, 209-215. https://doi.org/10.5338/KJEA.2011.30.2.209
  29. Lim, S.S., Lee, K.S., Lee, S.I., Lee, D.S., Kwak, J.H., Hao, X., Ro, H.M., Choi, W.J., 2012. Carbon mineralization and retention of livestock manure composts with different substrate quality in three soils. J. Soils Sediments. 12, 312-322. https://doi.org/10.1007/s11368-011-0458-9
  30. Lim, SS., Jung, J.W., Choi, W.J., Ro, H.M., 2011. Substrate quality effects on decomposition of three livestock manure composts with similar stability degree in an acid loamy soil. Korean J. Soil Sci. Fert. 44, 627-633.
  31. Lopez, M., Huerta-Pujol, O., Martinez-Farre, F.X., Soliva, Montserrat., 2010. Approaching compost stability from klason lignin modified method: Chemical stability degree for OM and N quality assessment, Resour. Conserv. Recy. 55, 171-181. https://doi.org/10.1016/j.resconrec.2010.09.005
  32. Mandal, B., Majumder, B., Bandyopadhyay, P.K.. Hazra, G.C.. Gangopadhyay, A.. Samantaray, R.N., Mishra, A.K., Chaudhury, J., Saha, M.N., Kundu, S., 2007. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biol. 13, 357-369. https://doi.org/10.1111/j.1365-2486.2006.01309.x
  33. Mikha, M.M., Rice, C.W. Milliken, G.A., 2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 37, 339-347. https://doi.org/10.1016/j.soilbio.2004.08.003
  34. Meijide, A., Cardenas, L.M., Sanchez-Martin, L., Vallejo, A., 2010. Carbon dioxide and methane fluxes from a barely field amended with organic fertilizers under Mediterranean climatic conditions. Plant Soil 328, 353-367. https://doi.org/10.1007/s11104-009-0114-y
  35. Mer, J.L. Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37, 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
  36. Moore, T.R., Dalva, M., 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 29, 1157-1164. https://doi.org/10.1016/S0038-0717(97)00037-0
  37. Nouchi, I., Yonemura, S., 2005. $CO_2$, $CH_4$ and $N_2O$ fluxes from soybean and barely double-cropping in relation to tillage in Japan. Phyton-ann. Rei Bot. A. 45, 327-338.
  38. Nyberg, G., Ekblad, A., Buresh, R., Högberg, P., 2002. Short-term patterns of carbon and nitrogen mineralization in a fallow field amended with green manures from agroforesty trees. Biol. Fertil. Soils. 36, 18-25. https://doi.org/10.1007/s00374-002-0484-2
  39. Powlson, D.S., Whitmore, A.P., Goulding, K.W.T., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 43-55.
  40. Shin, Y.K., Lee, Y.S., Ahn, J.W., Koh, M.H., Eom, K.C., 2003. Seasonal change of rice-mediated methane emission from a rice paddy under different water management and organic amendments. Korean J. Soil Sci. Fert. 36, 41-49.
  41. Sumner, M.E., Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. p. 1201-1229. In Sparks, D.L. et al., (ed.) Methods of soil analysis, part 3. Chemical methods. ASA and SSSA, Madison, Wi, USA.
  42. Turner, B.L., 2004. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. J. Environ. Qual. 33, 757-766. https://doi.org/10.2134/jeq2004.0757
  43. Yagi, K., Minami, K., 1990. Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. https://doi.org/10.1080/00380768.1990.10416797
  44. Yagi, K., Tsuruta, H., Kanda, K., Minami, K., 1996. Effect of water management of methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycle 10, 255-267. https://doi.org/10.1029/96GB00517
  45. Yan, H., Cao, M., Liu, J., Tao, B., 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agr. Ecosyst. Environ. 121, 325-335. https://doi.org/10.1016/j.agee.2006.11.008
  46. Yun, S.I., Kang, B.M., Lim, S.S., Choi, W.J., Ko, J., Yoon, S., Ro, H.M., Kim, H.Y., 2012. Further understanding CH4 emission from a flooded rice field exposed to experimental warming with elevated [$CO_2$]. Agric. For. Meteorol. 154-155, 75-83. https://doi.org/10.1016/j.agrformet.2011.10.011
  47. Zheng, J., Zhang, X., Li, L., Zhang, P., Pan, G., 2007. Effect of long-term fertilization on C mineralization and production of $CH_4$ and $CO_2$ under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129-138. https://doi.org/10.1016/j.agee.2006.07.008

Cited by

  1. Effect of Tillage Depths on Methane Emission and Rice Yield in Paddy Soil during Rice Cultivation vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.167
  2. New Estimates of CH4 Emission Scaling Factors by Amount of Rice Straw Applied from Korea Paddy Fields vol.32, pp.3, 2013, https://doi.org/10.5338/KJEA.2013.32.3.179
  3. Fly Ash Application Effects on CH4and CO2Emission in an Incubation Experiment with a Paddy Soil vol.45, pp.5, 2012, https://doi.org/10.7745/KJSSF.2012.45.5.853
  4. Nitrogen Inputs with Different Substrate Quality Modified pH, Eh, and N Dynamics of a Paddy Soil Incubated under Waterlogged Conditions vol.46, pp.17, 2015, https://doi.org/10.1080/00103624.2015.1069324
  5. Changes in Carbon Amount of Soil and Rice Plant as Influenced by the Cultivation of Different Green Manure Crops vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1058
  6. Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.736
  7. Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.564