References
- Ajawa, H.A., Tabatabai, M.A., 1994. Decomposition of different organic materials in soils. Biol. Fertil. Soils 18, 175-182. https://doi.org/10.1007/BF00647664
- Ali, M.A., Lee, C.H. Kim, S.Y., Kim, P.J., 2009. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manage. 29, 2759-2764. https://doi.org/10.1016/j.wasman.2009.05.018
- Alluvione, F., Bertora, C., Zavattaro, L., Grignani, C., 2010. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci. Soc. Am. J. 74, 384-395. https://doi.org/10.2136/sssaj2009.0092
-
Bedard C., Knowles, R., 1989. Physiology, biochemistry, and specific inhibitors of
$CH_4$ ,${NH_4}^+$ , and CO oxidation by methanotrophs and nitrifiers. Microbiological reviews 68-84. - Bernal, M.P., Sanchez-Mondedero, M.A., Paredes, C., Roig, A., 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric. Ecosyst. Environ. 69, 175-189. https://doi.org/10.1016/S0167-8809(98)00106-6
- Blanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci. 23, 481-504. https://doi.org/10.1080/07352680490886842
- Bronson, K.F., Singh, U., Neue, H.U., Jr. Abao, E.B., 1997. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil, I. Residue, nitrogen, and water management. Soil Sci. Soc. Am. J. 61, 981-987. https://doi.org/10.2136/sssaj1997.03615995006100030038x
- Chen, R., Lin, X., Wang, Y., Hu, J., 2011. Mitigating methane emissions from irrigated paddy fields by application of aerobically composted livestock manures in eastern China. Soil Use Manage. 27, 103-109. https://doi.org/10.1111/j.1475-2743.2010.00316.x
-
Choi, W.J., Matushima, M., Ro, H.M., 2011. Sensitivity of soil
$CO_2$ emission to fertilizer nitrogen species: Urea, ammonium sulfate, potassium nitrate, and ammonium nitrate. J. Korean Soc. Appl. Biol. Chem. 54, 1004-1007. https://doi.org/10.1007/BF03253193 -
Chu, H., Hosen, Y., Yagi, K,. 2007. NO,
$N_2O$ ,$CH_4$ and$CO_2$ fluxes in winter barely field of Japanese Andisol as affected by N fertilizer management. Soil Biol. Biochem. 39, 330-339. https://doi.org/10.1016/j.soilbio.2006.08.003 - Dalal, R.C. Allen, D.E., Livesley, S.J., Richards, G., 2008. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309, 43-76. https://doi.org/10.1007/s11104-007-9446-7
- Denmead, O.T., 1995. Novel meterological methods for measuring trace gas fluxes. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 351, 383-396. https://doi.org/10.1098/rsta.1995.0041
- Ellert, B.H., Janzen, H.H., 2008. Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can. J. Soil SCi. 88, 207-217. https://doi.org/10.4141/CJSS06036
- Franzluebbers, K., Weaver, R.W., Juo, A.S.R., Franzluebbers, A.J., 1994. Carbon and nitrogen mineralization from cowpea plants part decomposition in moist and in repeatedly dried and wetted soil. Soil Biol. Biochem. 26, 1379-1387. https://doi.org/10.1016/0038-0717(94)90221-6
- Fog, K., 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Review 63, 433-462. https://doi.org/10.1111/j.1469-185X.1988.tb00725.x
- Galang, J.S., Zipper, C.E., Prisley, S.P., Galbraith, J.M., Donovan, P.F., 2007. Evaluating terrestrial carbon sequestration options for virginia. Environ. Manage. 39, 139-150. https://doi.org/10.1007/s00267-005-0368-y
- Gee, G.W., Bauder, J.W., 1986. Particle size analysis. p. 383-412. In Campbell, G.S. et al., (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. ASA and SSSA, Madison, Wi, USA.
- Gil, M.V., Carballo, M.T., Calvo, L.F., 2008. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manage. 28, 1432-1440. https://doi.org/10.1016/j.wasman.2007.05.009
- Hou, A.X., Wang, Z.P., Chen, G.X., Patrick Jr., H., 2000. Effects of organic and N fertilizers on methane production potential in a Chinese rice soil and its microbiological aspect. Nutr. Cycl. Agroecosys. 58, 333-338. https://doi.org/10.1023/A:1009875509876
- Hutsch, B.W., 1998. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol. Fertil. Siols 28, 27-35. https://doi.org/10.1007/s003740050459
- Intergovernmental Panel on Climate Change (IPCC). 2007. Mitigation. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge.
-
Iqbal, J., Hu, R., Lin, S., Hatano, R., Feng, M., Lu, L., Ahamadou, B., Du, L., 2009.
$CO_2$ emission in a subtropical red paddy soil (Ultisol) as affected by straw and N fertilizer application: A case study in Southern China. Agr. Ecosyst. Environ. 131, 292-302. https://doi.org/10.1016/j.agee.2009.02.001 - Jastrow, J.D., Amonette, E.J., Bailey, V.L., 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5-23. https://doi.org/10.1007/s10584-006-9178-3
- Keeney, D.R., Nelson, D.W., 1982. Nitrogen-inorganic form. p. 643-698. In Page Al (ed.) Methods of soil analysis. part 2. Chemical and microbiological properties, ASA and SSSA, Madison, USA.
- Kim. J.G., Lee, K.B., Lee, S.B., Lee, D.B., Kim, S.J., 2000. The effect of long-term application of different organic material sources on chemical properties of upland soil. Korean J. soil Sci. Fert. 33, 416-431.
- Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J.M., Riha, S., Verchot, L., Rcha, J.W., Pell, A.N., 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11, 726-739. https://doi.org/10.1007/s10021-008-9154-z
- Lee, C.H., Park, K.D., Jung, K.Y., Ali, M.A., Lee, D., Gutierrez, J., Kim, P.J., 2010. Effect of chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agric. Ecosyst. Environ . 138, 343-347. https://doi.org/10.1016/j.agee.2010.05.011
- Lee, S.I., Lim, S.S., Lee, K.S., Kwak, J.H., Jung, J.W., Ro, H.M., Choi, W.J., 2011. Kinetic responses of soil carbon dioxide emission to increasing urea application rate. Korean J. Environ. Agric. 30, 209-215. https://doi.org/10.5338/KJEA.2011.30.2.209
- Lim, S.S., Lee, K.S., Lee, S.I., Lee, D.S., Kwak, J.H., Hao, X., Ro, H.M., Choi, W.J., 2012. Carbon mineralization and retention of livestock manure composts with different substrate quality in three soils. J. Soils Sediments. 12, 312-322. https://doi.org/10.1007/s11368-011-0458-9
- Lim, SS., Jung, J.W., Choi, W.J., Ro, H.M., 2011. Substrate quality effects on decomposition of three livestock manure composts with similar stability degree in an acid loamy soil. Korean J. Soil Sci. Fert. 44, 627-633.
- Lopez, M., Huerta-Pujol, O., Martinez-Farre, F.X., Soliva, Montserrat., 2010. Approaching compost stability from klason lignin modified method: Chemical stability degree for OM and N quality assessment, Resour. Conserv. Recy. 55, 171-181. https://doi.org/10.1016/j.resconrec.2010.09.005
- Mandal, B., Majumder, B., Bandyopadhyay, P.K.. Hazra, G.C.. Gangopadhyay, A.. Samantaray, R.N., Mishra, A.K., Chaudhury, J., Saha, M.N., Kundu, S., 2007. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biol. 13, 357-369. https://doi.org/10.1111/j.1365-2486.2006.01309.x
- Mikha, M.M., Rice, C.W. Milliken, G.A., 2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 37, 339-347. https://doi.org/10.1016/j.soilbio.2004.08.003
- Meijide, A., Cardenas, L.M., Sanchez-Martin, L., Vallejo, A., 2010. Carbon dioxide and methane fluxes from a barely field amended with organic fertilizers under Mediterranean climatic conditions. Plant Soil 328, 353-367. https://doi.org/10.1007/s11104-009-0114-y
- Mer, J.L. Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37, 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
- Moore, T.R., Dalva, M., 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 29, 1157-1164. https://doi.org/10.1016/S0038-0717(97)00037-0
-
Nouchi, I., Yonemura, S., 2005.
$CO_2$ ,$CH_4$ and$N_2O$ fluxes from soybean and barely double-cropping in relation to tillage in Japan. Phyton-ann. Rei Bot. A. 45, 327-338. - Nyberg, G., Ekblad, A., Buresh, R., Högberg, P., 2002. Short-term patterns of carbon and nitrogen mineralization in a fallow field amended with green manures from agroforesty trees. Biol. Fertil. Soils. 36, 18-25. https://doi.org/10.1007/s00374-002-0484-2
- Powlson, D.S., Whitmore, A.P., Goulding, K.W.T., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 43-55.
- Shin, Y.K., Lee, Y.S., Ahn, J.W., Koh, M.H., Eom, K.C., 2003. Seasonal change of rice-mediated methane emission from a rice paddy under different water management and organic amendments. Korean J. Soil Sci. Fert. 36, 41-49.
- Sumner, M.E., Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. p. 1201-1229. In Sparks, D.L. et al., (ed.) Methods of soil analysis, part 3. Chemical methods. ASA and SSSA, Madison, Wi, USA.
- Turner, B.L., 2004. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. J. Environ. Qual. 33, 757-766. https://doi.org/10.2134/jeq2004.0757
- Yagi, K., Minami, K., 1990. Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. https://doi.org/10.1080/00380768.1990.10416797
- Yagi, K., Tsuruta, H., Kanda, K., Minami, K., 1996. Effect of water management of methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycle 10, 255-267. https://doi.org/10.1029/96GB00517
- Yan, H., Cao, M., Liu, J., Tao, B., 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agr. Ecosyst. Environ. 121, 325-335. https://doi.org/10.1016/j.agee.2006.11.008
-
Yun, S.I., Kang, B.M., Lim, S.S., Choi, W.J., Ko, J., Yoon, S., Ro, H.M., Kim, H.Y., 2012. Further understanding CH4 emission from a flooded rice field exposed to experimental warming with elevated [
$CO_2$ ]. Agric. For. Meteorol. 154-155, 75-83. https://doi.org/10.1016/j.agrformet.2011.10.011 -
Zheng, J., Zhang, X., Li, L., Zhang, P., Pan, G., 2007. Effect of long-term fertilization on C mineralization and production of
$CH_4$ and$CO_2$ under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129-138. https://doi.org/10.1016/j.agee.2006.07.008
Cited by
- Effect of Tillage Depths on Methane Emission and Rice Yield in Paddy Soil during Rice Cultivation vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.167
- New Estimates of CH4 Emission Scaling Factors by Amount of Rice Straw Applied from Korea Paddy Fields vol.32, pp.3, 2013, https://doi.org/10.5338/KJEA.2013.32.3.179
- Fly Ash Application Effects on CH4and CO2Emission in an Incubation Experiment with a Paddy Soil vol.45, pp.5, 2012, https://doi.org/10.7745/KJSSF.2012.45.5.853
- Nitrogen Inputs with Different Substrate Quality Modified pH, Eh, and N Dynamics of a Paddy Soil Incubated under Waterlogged Conditions vol.46, pp.17, 2015, https://doi.org/10.1080/00103624.2015.1069324
- Changes in Carbon Amount of Soil and Rice Plant as Influenced by the Cultivation of Different Green Manure Crops vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1058
- Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.736
- Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.564