• Title/Summary/Keyword: Synthetic fertilizer

Search Result 46, Processing Time 0.035 seconds

Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure (화학비료, 가축분뇨 및 퇴비의 질소동위원소비)

  • Lim, Sang-Sun;Lee, Sang-Mo;Lee, Seung-Heon;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.453-457
    • /
    • 2010
  • To investigate the difference in N isotope ratio ($^{15}N/^{14}N$, expressed as ${\delta}^{15}N$) among N sources (synthetic fertilizer, livestock manure, and manure compost), eight synthetic fertilizer, four livestock manure, and thirty-seven compost samples were collected and analyzed for ${\delta}^{15}N$. The mean ${\delta}^{15}N$ values of N sources were $-1.5{\pm}0.5$‰ (range: -3.9 to +0.5‰) for synthetic fertilizer, $+6.3{\pm}0.4$‰ (+5.3 to +7.2‰) for manure, and $+16.0{\pm}0.4$‰ (+9.3 to +20.9‰) for compost. The lower ${\delta}^{15}N$ of synthetic fertilizer was attributed to its N source, atmospheric $N_2$ of which ${\delta}^{15}N$ is 0‰ Meanwhile, more $^{15}N$-enrichment of compost than manure was assumed to be resulted from N isotopic fractionation (faster loss of $^{14}N$-bearing compound than $^{15}N$) associated with N loss particularly via $NH_3$ volatilization during composting. Therefore, our study shows that ${\delta}^{15}N$ values could successfully serve in discriminating two major N sources (synthetic fertilizer and compost) in agricultural system.

Estimation of Rice Growth Using RADARSTA-2 SAR Images at Seosan Region

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.237-244
    • /
    • 2013
  • Radar remote sensing is appropriate for monitoring rice because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. We examined the temporal variations of backscattering coefficients with full polarization. Backscattering coefficients for all polarizations increased until Day Of Year (DOY 222) and then decreased along with Leaf Area Index (LAI), fresh weight, and Vegetation Water Content (VWC). Vertical transmit and Vertical receive polarization (VV)-polarization backscattering coefficients were higher than Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients in early rice growth stage and HH-polarization backscattering coefficients were higher than VV-polarization backscattering coefficients after effective tillering stage (DOY 186). Correlation analysis between backscattering coefficients and rice growth parameters revealed that HH-polarization was highly correlated with LAI, fresh weight, and VWC. Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients.

Effects of arbuscular mycorrhizal fungi on enhancing growth, fruit quality, and functional substances in tomato fruits (Lycopersicon esculentum Mill.)

  • Thanapat Suebrasri;Wasan Seemakram;Chanon Lapjit;Wiyada Mongkolthanaruk;Sophon Boonlue
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.239-247
    • /
    • 2023
  • This study aimed to investigate the efficiency of arbuscular mycorrhizal fungi (AMF) in enhancing plant performance and bioactive compound concentrations in tomatoes (Lycopersicon esculentum Mill.). This factorial pot experiment included nine replications over 120 days of cultivation. Three AMF species (Rhizophagus prolifer, Claroideoglomus etunicatum, and Acaulospora mellea) were utilized as inoculum, while non-mycorrhizal controls with or without synthetic NPK fertilizer were compared. Interestingly, C. etunicatum KS-02 inoculations effectuated the best fruit growth and weight, which were statistically higher than those of the control without AMF. However, only fruit fresh weight was higher in plants inoculated with C. etunicatum KS-02 than those treated with the synthetic NPK fertilizer. In addition, C. etunicatum KS-02 inoculations induced a ≥ 11% increase in DDPH (1,1-diphenyl-2-picrylhydrazyl) activity, lycopene content, and carotenoid content compared to the control. This study is the first to report Claroideoglomus species' effectiveness in promoting growth, fruit yield, and bioactive compound production in L. esculentum Mill. These findings substantiate the significant potential of C. etunicatum KS-02 for tomato cultivation without the adverse effects of excessive synthetic fertilizer use.

Evaluation of Field Applicability of Phosphorus Removal Capability and Growth of Bacillus sp. 3434 BRRJ According to Environmental Factors

  • Yoo, Jin;Kim, Deok-Hyun;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • With the population growth and industrialization, the characteristics of discharged waste water and sewage have become more diverse. The removal of phosphorus (P) in the wastewater is essential for the prevention of eutrophication in the river and stream. This study was performed in order to estimate the field application of the Bacillus sp. 3434 BRRJ. Bacillus sp. 3434 BRRJ was cultured in the raw wastewater and synthetic medium at the 5 L reactor. The best optimum conditions for P removal by Bacillus sp. 3434BRRJ in the synthetic medium at the 5 L reactor were as follows: temperature, $30^{\circ}C$; P concentration, 20 mg/L; carbon sources, glucose + acetate (1:1); oxygen concentration, alternatively anaerobic and aerobic conditions. P removal efficiency under the optimum condition was 89.4%. In case of wastewater, P removal efficiency was 95.5% under controlled at $30^{\circ}C$. Through this study we confirmed that P removal by Bacillus sp. 3434BRRJ in case of wastewater was as effective as the synthetic medium. It is considered that Bacillus sp. 3434 BRRJ can be applied to the treatment of wastewater in order to biologically remove P from the wastewater on a large scale.

Soil Conditioning for better Soil Management (합리적(合理的) 토양관리(土壤管理)를 위한 토양개량(土壤改良))

  • De Doodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 1992
  • Polymeric substances in organic matter of soils aggregate soil particles into a crumb structure which greatly influences such properties as water movement, aeration and heat transfer. Poorly-structured soils may be improved by the incorporation of synthetic polymers where the main objects are : promoting germination or establishing crops, improving drainage, combating wind and water erosion, and reducing evaporation from the surface of soil under arid condition.

  • PDF

Effects of Liquid Fertilizer Produced from Fermented Clippings for Kentucky bluegrass (Kentucky bluegrass의 생육을 위한 생초복합비료 효과)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • Organic fertilizers are divided into natural organic and synthetic organics. The benefits of natural organic fertilizer were reported from the previous researches. The previous researches have reported that clippings are nitrogen source for turfgrass growth. However, the limited research results about clippings as a source of natural organic fertilizers were reported. The objective of the research to investigate effects of liquid fertilizer produced from fermented clippings for creeping bentgrass growth. Liquid fertilizer (LF) produced was used for the research to be compared with urea and two natural organic fertilizers of different source (NO-1 and NO-2). Kentucky bluegrass (Poa pratensis L., Midnight) was used for the study. Turfgrass quality was measured by visual evaluation every two weeks from June to October, 2011 using a scale of 1 to 9 (1=worst, 6=acceptable, and 9=best). LF produced greater turfgrass quality than acceptable quality, especially with the summer period while urea and NO produced lower turfgrass quality than acceptable quality of 6. LF had less quality alteration than urea and NO during the study. Based on the result of the study, LF are more stable to maintain turfgrass quality than urea and NO.

Effects of Liquid Fertilizer Produced from Fermented Clippings for Creeping Bentgrass Growth (Creeping Bentgrass의 생육을 위한 예지물 발효 액상비료의 효과)

  • Kim, Sang-Jun;Kim, Do-Whan;Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.202-207
    • /
    • 2011
  • Organic fertilizers are divided into natural organic and synthetic organics. The benefits of natural organic fertilizer were reported from the previous researches. However, the limited research results about clippings as a source of natural organic fertilizers were reported. The objective of the research to investigate effects of liquid fertilizer produced from fermented clippings for creeping bentgrass growth. Liquid fertilizer (LF) produced was used for the research to be compared with Urea and two natural organic fertilizers of different source (NO-1 and NO-2). Creeping bentgrass (Agrostis stolonifera L., L-93) was used for the study. Turfgrass quality was measured by visual evaluation every two weeks from June to October, 2011 using a scale of 1 to 9 (1=worst, 6=acceptable, and 9=best). Turfgrass disease damage was measured by percent of area damaged when a turfgrass disease occurred. LF produced lower damage than NO and urea when temperature was high. Although NO-2 produced the highest or equal to the highest turfgrass quality in June and October, LF had the highest or equal to the highest quality from July to September.

Short-Term Fertilization with Hairy Vetch, Compost and Chemical Fertilizer Affect Red Pepper Yield and Quality and Soil Properties

  • Selvakumar, Gopal;Yi, Pyoung Ho;Lee, Seong Eun;Han, Seung Gab
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • BACKGROUND: The use of green manure and compost as organic fertilizer may increase crop yield and soil fertility due to improved soil nutrient availability and soil organic matter content (SOM). This study aimed to investigate the effects of hairy vetch (Vicia villosa L.) and compost application on red pepper growth, yield, fruit quality and soil health. METHODS AND RESULTS: The treatments were no fertilizer (CON), chemical fertilizer (CF), hairy vetch (HV), and livestock compost+HV (LC+HV). Red pepper seedlings (70 days old) were transplanted and maintained in experimental plots for 140 days. Plant dry weight, micro- and macronutrient contents of plants and soil chemical properties were determined. All fertilizer treatments significantly increased plant dry weight. Fruit yield was significantly highest with HV treatment. As for nutrient content, plants in HV and LC+HV treatments have significantly higher K and Ca contents than the other treatments. Regarding soil properties, HV and LC+HV application significantly altered the soil chemical properties. Significantly higher SOM was observed in HV and LC+HV treated soils. CONCLUSION: The results of this study suggest that short-term application of hairy vetch and compost is an effective alternative to the conventional chemical fertilizer to increase fruit yield red pepper and improve soil health.

Biodegradable Check Dam and Synthetic Polymer, its Experimental Evaluation for Turbidity Control of Agricultural Drainage Water

  • Kim, Minyoung;Kim, Seounghee;Kim, Jinoh;Lee, Sangbong;Kim, Youngjin;Cho, Yongho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.458-462
    • /
    • 2013
  • A drainage ditch is normally a component of drainage networks in farming systems to remove surplus water, but at the same time, it may act as a major conduit of agricultural nonpoint source pollutions such as sediment, nitrogen, phosphorus, and so on. The hybrid turbidity reduction system using biodegradable check dam and synthetic polymer was developed in this study to manage pollutant discharge from agricultural farmlands during rainfall events and/or irrigation periods. The performance of this hybrid system was assessed using a laboratory open channel sized in 10m-length and 0.2m-width. Various check dams using agricultural byproducts (e.g., rice straw, rice husks, coconut fiber and a mixture of rice husks and coconut fiber) were tested and additional physical factors (e.g., channel slope, flowrate, PAM dosage, turbidity level, etc.) affecting on turbidity reduction were applied to assess their performance. A series of lab experiments clearly showed that the hybrid turbidity reduction system could play a significant role as a supplementary of Best Management Practice (BMP). Moreover, the findings of this study could facilitate to develop an advanced BMP for minimizing nonpoint source pollution from agricultural farmlands and ultimately to achieve the sustainable agriculture.

Effects of Urease Inhibitor, Nitrification Inhibitor, and Slow-release Fertilizer on Nitrogen Fertilizer Loss in Direct-Seeding Rice

  • Lee, Jae-Hong;Lee, Ho-Jin;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.230-235
    • /
    • 1999
  • To study the effects of an urease inhibitor, N-(n-butyl)-thiophosphoric triamide (NBPT), and a nitrification inhibitor, dicyandiamide (DCD), on nitrogen losses and nitrogen use efficiency, urea fertilizer with or without inhibitors and slowrelease fertilizer (synthetic thermoplastic resins coated urea) were applied to direct-seeded flooded rice fields in 1998. In the urea and the urea+DCD treatments, NH$_4$$^{+}$ -N concentrations reached 50 mg N L$^{-1}$ after application. Urea+NBPT and urea+ NBPT+DCD treatments maintained NH$_4$$^{+}$ -N concentrations below 10 mg N L$^{-1}$ in the floodwater, while the slow-release fertilizer application maintained the lowest concentration of NH$_4$$^{+}$ -N in floodwater. The ammonia losses of urea+NBPT and urea+NBPT+DCD treatments were lower than those of urea and urea+DCD treatments during the 30 days after fertilizer application. It was found that N loss due to ammonia volatilization was minimized in the treatments of NBPT with urea and the slow-release fertilizer. The volatile loss of urea+DCD treatment was not significantly different from that of urea surface application. It was found that NBPT delayed urea hydrolysis and then decreased losses due to ammonia volatilization. DCD, a nitrification inhibitor, had no significant effect on ammonia loss under flooded conditions. The slow-release fertilizer application reduced ammonia volatilization loss most effectively. As N0$_3$$^{[-10]}$ -N concentrations in the soil water indicated that leaching losses of N were negligible, DCD was not effective in inhibiting nitrification in the flooded soil. The amount of N in plants was especially low in the slow-release fertilizer treatment during the early growth stage for 15 days after fertilization. The amount of N in the rice plants, however, was higher in the slow-release fertilizer treatment than in other treatments at harvest. Grain yields in the treatments of slow-release fertilizer, urea+NBPT+ DCD and urea+NBPT were significantly higher than those in the treatments of urea and urea+DCD. NBPT treatment with urea and the slow-release fertilizer application were effective in both reducing nitrogen losses and increasing grain yield by improving N use efficiency in direct-seeded flooded rice field.field.

  • PDF