• Title/Summary/Keyword: Organic input

Search Result 386, Processing Time 0.029 seconds

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei;Oh Sung-Yong;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.194-202
    • /
    • 2003
  • Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.

Studies on Change of Organic Farming in Korea from ($1907{\sim}2007$) (한국 유기농업 100년($1907{\sim}2007$)의 변화에 관한 연구)

  • Lee, Hyo-Won;Yun, Jin-Hyeon
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.4
    • /
    • pp.399-411
    • /
    • 2007
  • Korean organic farming has been well developed over the last two decades. It demonstrates that the number of certificated farm for organic agriculture and products have been drastically increased in recent year. However, the organic farmers have thought that organic farming rely only on organic fertilizer and they don't keep organic farming principle in which organic farmer should enhance biological activity and crop rotation. This study was to compare nutrient input, recommendation, cropping system and organic product circulation between the early $20^{th}$ century and beginning of the $21^{st}$ century. The population of Korea has increased 7.3 times more than that of a century ago but cultivated land has been decreased during 100 years. The rice production in 2002 was 4.2 times higher than that of production in 1912. The input of N, P and K in 1907 on the basis of King's suggestion was 95.6kg/ha, 15.9kg/ha and 3.0kg/ha, respectively. Nitrogen came from excreta (40%), green manure (55%) and compost (5%) in the early 20th century. On the other hand, organic farmer input organic resources such as wood chip (30.1%), compost (27.8%), rice straw (14%) and others (25%) these days. In terms of nutrient balance calculated nutrient and absorption by plants, organic rice farmer apply excessive nitrogen and phosphorus to the soil. They was used to put $7{\sim}10$ times more nitrogen than that of a century ago. Nutrient recommendation was similar in N and P between early 20th century and early $21^{st}$ century. Farmers in both century did not rotate crops in the field. Today, organic farmers engaged in more continuous cultivation than in early 20th century. Farmers in the early $20^{th}$ century produced locally, consumed locally the agricultural products, but organic farmers in the $21^{st}$ century produce the organic product in the local farmland and consumed in the large city and also a lot of foreign organic products have been imported in recent year.

  • PDF

Yield of Rice, Analysis of Economics and Environmental Impact in Duck-Paddy Rice (오리제초 수도작의 벼 수량, 경제성 및 환경친화성 평가)

  • 손상목;김영호;임경수
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.45-71
    • /
    • 2001
  • The duck-rice forming system is increasingly spread up throughout Korea since 1992. It is discussed the rice field, rice quality, weed and pest management in the duck-rice weeding system compared to conventional farming system. Moreover the optimizing duck population, system management and fertilizer application rate were reported. Energy input and output by duck-rice farming system were carefully compared with those of low input sustainable paddy field and conventional farming paddy field. To find out the environmentally sound function of duck-rice system, the total nitrogen in paddy soil and paddy water, and nitrogen cycle in paddy rice cultivation system were analysed. finally the input and output were calculated, and ecological characteristic were determined in terms of nitrogen balance, labor input, animal input, renewable energy input, turnover of soil organic matter, energy loss, non-renewable indirect and direct energy input. It was concluded duck-rice weeding system could be recommended in terms of net only environmentally sound, but also farmer's income. But there are still some research needs for successful adaption of duck-rice farming to investigate to determine the optimal population of duck in rice paddy field unit, release time of duckling, duck management after release, and strategy for duck marketing and duck processing.

  • PDF

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea (동해 울릉분지 퇴적물에서 유기탄소 순환)

  • Lee, Tae-Hee;Kim, Dong-Seon;Khim, Boo-Keun;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2010
  • This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.

Korean-Style No-tillage Organic Agriculture on Recycled Ridge IV. Changes in Soil Microorganisms and Enzymes by Split Irrigation and Organic Matter Application in Organic Farming of Red Pepper in Plastic Film Greenhouse (두둑을 재활용한 한국형 무경운 유기 농업 IV. 분할관수와 유기물처리에 의한 시설 고추 유기재배 토양 미생물상과 토양 효소의 변화)

  • Yang, Seung-Koo;Shin, Kil-Ho;Song, Yong-Su;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.311-328
    • /
    • 2017
  • This study was carried out to investigate the changes in soil microorganisms and soil enzymes by split irrigation and organic matter application under no-tillage green house conditions. Soil bacteria and fungi abundances were higher in soybean cake fertilizer than in the soil without the soybean cake fertilizer under whole quantity irrigation. Bacteria and fungi abundances in soil increased with increasing organic fertilizer application rate. Bacteria and fungi amount in the soil increased at half division irrigation in no-treatment of soybean cake fertilizer compared with whole quantity irrigation. Actinomycete amount in the soil decreased with increasing soybean cake fertilizer with whole quantity irrigation while clearly increased in no-treatment of soybean cake fertilizer. Actinomycete amount in soil clearly increased with increasing organic fertilizer input at half division irrigation. Chitinase activity in the soil decreased in soybean cake fertilizer with increasing organic fertilizer input, while increased in no-treatment of soybean cake fertilizer. Chitinase activity in the soil increased at half division irrigation compared with whole quantity irrigation regardless of soybean cake fertilizer input. ${\beta}$-Glucosidase activity in the soil was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. ${\beta}$-Glucosidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. ${\beta}$-Glucosidase activity in the soil clearly increased in no-treatment of soybean cake fertilizer at half division irrigation compared with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil was not significantly different at half division irrigation and whole quantity irrigation in organic fertilizer input, while increased at half division irrigation in no-treatment of soybean cake fertilizer. Acid phosphatase activity increased at standard level 66% in soybean cake fertilizer, while was not significantly different in no-treatment of soybean cake fertilizer. Spore density of Arbuscular Mycorrhizal Fungi (AMF) in the soil increased with increasing organic fertilizer input at whole quantity irrigation in no-treatment of soybean cake fertilizer, while decreased above the standard level 66% in organic fertilizer input. However, spore density of AMF in the soil was not significantly different in soybean cake fertilizer regardless of input amount of organic fertilizer. Root colonization rate of AMF in red pepper roots was not significant difference at two irrigations regardless of soybean cake input.

The Economic Effects of Chemical Fertilizer in Big Data (작목별 비료투입에 따른 경제적 효과 추정)

  • Lee, Sang-Ho;Song, Kyung-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.619-628
    • /
    • 2018
  • This study analyze the economic effect of chemical fertilizer. We used the input and output data, and the analysis variables include production output nitrogen, phosphoric acid, potassium, seeds, and labor. The main results are as follows. First, for spring potatoes, potassium increases to a certain level of output, but over a certain stage, the output decreases as the input increases. Optimal use of potassium in the calculation of spring potatoes can achieve the effect of reducing input costs and increasing output simultaneously. Second, radish In autumn, nitrogen increases to a certain level, but over a certain stage it represents a reverse U-shaped relationship in which output decreases as input increases. This means that reducing the amount of fertilizer input increases the output. This means that soil-related agricultural big data can contribute to the management of nutrients and greenhouse gas reduction in agricultural land.

Current Situation of Environment-Friendly Production of Apples (환경농법에 의한 사과생산 실태 및 경영개선)

  • Park, Heung-Sub;Oh, Kwang-In;Park, Joon-Keun
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.1-16
    • /
    • 1999
  • In this study, questionnaire were made to environment-friendly producers of apples regarding farm management methods in low-input production method. utilizing organic materials, production and marketing of apples with lower agricultural chemical residues. Besides, five apples farms were visited to find out their management situation by employing the low-input production method in order to protect the environment as well as consumer's health. Those five low-input apple farms were scattered in Kyungbuk, Chungnam, and Chonnam Provinces, There were not many low-input apple farms across the nation from the beginning and, as a result, increasing the sample size was basically very difficult. Most of these farms were using 140hrs of labor per 10a, of which 30hrs in pre-season management, 25hrs in plowing and weed control, 15hrs in disease and pest control, 20hrs in harvest and marketing and 50hrs in miscellaneous activities. Relatively, pest control takes much time in that they would spray pesticides 7-10 times a season to control the apple disease, 9 times on the average. The average gross revenue of low-input apple farms was about \2,000,000/10a, and their average yield was 2,000kg/10a, which are 25% and 13% lower, respectively, than the ordinary apple production case. This means the low-input farmers are inefficient in marketing their products. On the other hand, their production costs were 20.4% higher than the ordinary apple farms on the average. Since the imported foreign fruits including apples must use various agricultural chemicals on their way to the export markets, the domestic low-input apples have competitive edge over them in therms of food safety. In order to improve the low-input apple industry, active cooperation is needed among the producers, government and researchers more than ever. Among other things, production cost reduction and quality improvement with lower chemical residues are part of the urgent matters to be done.

  • PDF

The Characteristics of suspended particulate matter and surface sediment of C, N in the Northern East China Sea ill summer (제주도 서남방 동중국해에서 하계 입자성부유물 및 표층퇴적물의 C, N 분포 특성)

  • KANG Mun Gyu;CHOI Young Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2003
  • Organic carbon and nitrogen contents in suspended particulate matter (SPM) and surface sediments in seawater were measured in the Northern East China Sea in summer. The distribution of particulate organic carbon(POC) and particulate organic nitrogen(PON) were in the ranges of 54~481㎍/ℓ and 6~85㎍/ℓ, respectively, with relatively high level of concentrations in the western and southern sides of the study area. Also, there has been a significantly positive correlation between POC and PON, gradually increasing toward the deeper range of depth. Average C:N ratios of POC and PON of SPM were 6 in study area. The ratios of POC to PON of SPM increased as the range of depth increased, indicating nitrogen decomposes more rapidly than carbon and is considered to be influenced by the input of detritus from surface sediments. The distribution of total organic matter(TOM), total organic carbon(TOC) and total organic nitrogen(TON) in surface sediments were in the ranges of 3.1~9.6%, 0.282~0.635% and 0.022~0.069%, respectively, with relatively low range in the western and northern sides of the study area. The ratio of TOC to TON of surface sediments were in the range of 9.8~17.4(average of 13), strongly indicating the active role of the input from the terrestrial organic pollutants.

  • PDF

A Study on the Removal Characteristics of Organic matter and Bacteria with the Use of Ozone (오존을 이용한 유기물 및 세균의 제거 특성에 관한 연구)

  • Lee, Kwan-Young;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The aim of this study is to measure the removal characteristics of organic matter and bacteria with the use of ozone to reduce the problems caused by bacteria and organic matter which appear in sea-water is summer season. When the total input of ozone was $1.4mg/{\ell}O_3$, the removal rate of bacteria and E-coli from sea-water proved to be 100%. With the same input of ozone, on the other hand, the removal rate of COD turned to be relatively low, 50%, which was to the fact that sea-water consists of salt matter which is a kind of COD matter. This result supports the idea that we can keep using ozone steadily in the future to remove organic matters and bacteria from sea-water because ozone destructs relatively less salt matter in sea-water. Also, the treatment effect rate of SS, turbidity and organic matters such as $NH_3$-N, $NO_3$-N etc, was very high. As a result, we assume that the treatment of organic matter in sea-water with ozone is very effective

  • PDF