DOI QR코드

DOI QR Code

Development of a MEMS Resonant Accelerometer Based on Robust Structural Design

강건 구조설계에 기반한 미소 공진형 가속도계의 개발

  • 박우성 (포항공과대학교 기계공학과) ;
  • 부상필 (울산대학교 기계공학과) ;
  • 박수영 ((주)마이크로인피니티) ;
  • 김도형 ((주)마이크로인피니티) ;
  • 송진우 ((주)마이크로인피니티) ;
  • 전종업 (울산대학교 기계공학과) ;
  • 김준원 (포항공과대학교 기계공학과)
  • Received : 2011.10.17
  • Accepted : 2011.12.20
  • Published : 2012.03.31

Abstract

This paper describes the design, fabrication and testing of a micromachined resonant accelerometer consisting of a symmetrical pair of proof masses and double-ended tuning fork(DETF) oscillators. Under the external acceleration along the input axis, the proof mass applies forces to the oscillators, which causes a change in their resonant frequency. This frequency change is measured to indicate the applied acceleration. Pivot anchor and leverage mechanisms are adopted in the accelerometer to generate larger force from a proof mass under certain acceleration, which enables increasing its scale factor. Finite element method analyses have been conducted to design the accelerometer and a silicon on insulator(SOI) wafer with a substrate glass wafer was used for fabricating it. The fabricated accelerometer has a scale factor of 188 Hz/g, which is shown to be in agreement with analysis results.

Keywords

References

  1. N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors", Proc. IEEE, vol. 86, no. 8, pp. 1640 -1659, 1998. https://doi.org/10.1109/5.704269
  2. N. Barbour and G. Schmidt, "Inertial sensor technology trends", IEEE Sensors Journal, vol. 1, no. 4, pp. 332-339, 2001. https://doi.org/10.1109/7361.983473
  3. A. A. Seshia, M. Palaniapan, T. A. Roessig, and R. T. Howe, "A vacuum packaged surface micromachined resonant accelerometer", J. Microelectromech. Syst., vol. 11, no. 6, pp. 784-793, 2002. https://doi.org/10.1109/JMEMS.2002.805207
  4. S. X. P. Su, H. S. Yang, and A. M. Agogino, "A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology", IEEE Sensors Journal, vol. 5, no. 6, pp. 1214-1223, 2005. https://doi.org/10.1109/JSEN.2005.857876
  5. L. He, Y. P. Xu, and M. Palaniapan, "A CMOS readout circuit for SOI resonant accelerometer with $4-{\mu}g$ bias stability and $20-{\mu}g/{\sqrt{Hz}}$ resolution", IEEE J. Solid-State Circuits, vol. 43, pp. 1480-1490, 2008. https://doi.org/10.1109/JSSC.2008.923616
  6. O. Le Traon, D. Janaiud, B. Lecorre, M. Pernice, S. Muller, and J.-Y Tridera, "Monolithic differential vibrating beam accelerometer within an isolating system between the two resonators", Proc. IEEE Sensors Conf., pp. 648-651, Irvine, CA, USA, 2005.
  7. S. Seok and K. Chun, "Inertial-grade in-plane resonant silicon accelerometer", Electronics Letters, vol. 42, no. 19, pp. 1092-1093, 2006. https://doi.org/10.1049/el:20061774
  8. W. C. Young and R. G. Budynas, Roark's Formulas for Stress and Strain (7th Edition), McGraw-Hill, New York, p. 229, 2002.
  9. W. D. Sawyer, M. S. Prince, and G. J. Brown, "SOI bonded wafer process for high precision MEMS inertial sensors", J. Micromech. Microeng., vol. 15, pp. 1588-1593, 2005. https://doi.org/10.1088/0960-1317/15/8/030
  10. C. A. Choi, C. S. Lee, W. I. Jang, Y. S. Hong, J. H. Lee, and B. K. Sohn, "Stress characteristics of multilayer polysilicon for the fabrication of micro resonators", J. Kor. Sensors Soc., vol. 8, no. 1, pp. 53-62, 1999.
  11. B.-K. Choi, T.-H. Chang, C.-K. Lee, K.-D. Jung, and J.-P. Kim, "A study on the fabrication of the lateral accelerometer using SOG(Silicon on Glass) process", J. Kor. Sensors Soc., vol. 13, no. 6, pp. 430-435, 2004. https://doi.org/10.5369/JSST.2004.13.6.430
  12. X. Ding, W. H. Ko, and J. M. Mansour, "Residual stress and mechanical properties of boron-doped p+- silicon films", Sensors and Actuators A: Physical, vol. 23, pp. 866-871, 1990. https://doi.org/10.1016/0924-4247(90)87048-N