• Title/Summary/Keyword: Micromachning

Search Result 3, Processing Time 0.013 seconds

Fabrication and Measurement of Tunable Millimeter-wave Filters (주파수 가변형 밀리미터파 필터의 제작 및 측정)

  • Park, Jae-Hyoung;Kim, Hong-Teuk;Kwon, Young-Woo;Kim, Yong-Kweon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.627-634
    • /
    • 2000
  • In this paper, new micromachined tunble bandpass filters for multi-band millimeter-wave telecommunication systems are proposed. Two types of mm-wave tunable filters are fabricated using micromachning technology and the responses of the filters are measured. One is two-pole lumped elements filter and the other two-pole resonators filter. Frequency tunability of the filter is achieved by changing the gap between a common CPW ground plate and the movable cantilever beam connected to the transmission line with the controllable renge of 2.5${\mu}m$. The deflection of cantilever beam is measured with the applied DC voltage. With the applied bias voltage from 0 to 50 V, the fabricated filters show 0.6 GHz(2.3%) at 26.6 GHz, and 0.8 GHz(2.5%) at 32 GHz center frequency shift for the lumped elements and resonators filter, respectively. The life time of the fabricated gold cantilever structure are tested.

  • PDF

Development of a MEMS Resonant Accelerometer Based on Robust Structural Design (강건 구조설계에 기반한 미소 공진형 가속도계의 개발)

  • Park, U-Sung;Boo, Sang-Pil;Park, Soo-Young;Kim, Do-Hyung;Song, Jin-Woo;Jeon, Jong-Up;Kim, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • This paper describes the design, fabrication and testing of a micromachined resonant accelerometer consisting of a symmetrical pair of proof masses and double-ended tuning fork(DETF) oscillators. Under the external acceleration along the input axis, the proof mass applies forces to the oscillators, which causes a change in their resonant frequency. This frequency change is measured to indicate the applied acceleration. Pivot anchor and leverage mechanisms are adopted in the accelerometer to generate larger force from a proof mass under certain acceleration, which enables increasing its scale factor. Finite element method analyses have been conducted to design the accelerometer and a silicon on insulator(SOI) wafer with a substrate glass wafer was used for fabricating it. The fabricated accelerometer has a scale factor of 188 Hz/g, which is shown to be in agreement with analysis results.

A Physical Cochlear Model for Transducer Performance Evaluation of Implantable Hearing Aid with Round Window Driver (정원창 구동기의 진동체 성능 평가를 위한 내이 물리모델)

  • Shin, Dong Ho;Lim, Hyung Gyu;Jung, Eui Sung;Seong, Ki Woong;Lee, Jyung Hyun;Cho, Jin Ho
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • Recently, various hearing aids are developed to overcome hearing loss. There are available hearing aids, such as air conduction hearing aid, implantable middle ear hearing aid and so on. But air conduction hearing aid is inconvenience caused by howling, and ossicle chain driving type implantable middle ear hearing aid has some week point due to problem of possible nercobiosis of coupling spot along incus long process. In recent years, in order to improve these shortcomings round window (RW) driving hearing aid has been paying attention. In this paper, the physical cochlear model is proposed for a performance evaluation of the RW driving hearing aids of a transducer. In order to verify an experiment proposed on a performance of physical cochlear model, the transducer which has ossicles characteristics is used. By measuring and comparing the frequency characteristics of transducer with ossicles and human temporal bone, performance of physical cochlear model was verified. As from the result of experiment, it is expected that an implemented cochlear model is useful for evaluating characteristics of RW transducer.