Evaluation of Agronomic Characteristics, Nutritional Contents, and Insect Response of the Transgenic Potato Resistant to Glufosinate Ammonium

제초제 저항성 형질전환 감자의 농업적 특성, 영양 성분 및 해충 반응성 평가

  • Ahn, Soon-Young (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Kwang-Soo (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Hyeo-Won (Research Coordination Division, Rural Development Administration) ;
  • Yi, Jeong-Yoon (National Agrodiversity Center, Rural Development Administration) ;
  • Bae, Shin-Cheol (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Cho, Ji-Hong (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Young-Eun (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Ju-Il (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Hyun-Jun (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Hyun-Mook (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration)
  • 안순영 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 서효원 (농촌진흥청 연구관리과) ;
  • 이정윤 (농촌진흥청 농업유전자원센터) ;
  • 배신철 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 조지홍 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 박영은 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 김주일 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 김현준 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 조현묵 (농촌진흥청 국립식량과학원 고령지농업연구센터)
  • Received : 2010.08.12
  • Accepted : 2011.04.22
  • Published : 2011.06.30

Abstract

The agronomic characteristics, nutritional contents, and insect response of the potato clones transformed with a glufosinate ammonium resistance gene were evaluated. Among the 4 transgenic potato clones, the Bar 3 clone was selected as a promising one for commercialization. The Bar 3 clone showed similar tuber yield capacity but higher herbicide resistance as compared with the non-transgenic potato cv. Dejima. The herbicide resistance of the Bar 3 clone was more than 5 times higher when tested with the herbicide concentration recommended by the producer. The major agronomic characteristics of the Bar 3 clone were not different from those of the non-transgenic Dejima. The annual variation in yields and agronomic characteristics showed similar tendency for 2 years from the third to fourth generation after transformation. The tubers of the Bar 3 clone also showed low occurrence in common scab and physiological disorders such as cracking and secondary growth. But the reasons for such results are yet to be studied. Also, it was considered that the Bar 3 clone have a potential of reducing not only common scab occurrence but also soil erosion during potato cultivation in field. The nutritional contents (mineral compound, vitamin C and amino acid) and response to Spodoptera exigua of the transgenic potato clones were not significantly different.

제초제 저항성 유전자를 국내 장려품종 감자인 '대지'에 도입하여 제초제 저항성 감자계통들을 개발하였으며, 그 중에서 농업적 형질이 우수하며 실용화 가능성이 큰 계통을 선발하기 위하여 3년간 포장 검정을 실시하였다. 제초제 저항성 감자 4계통 중에서 가장 상업화에 적합한 Bar 3 계통을 선발하였으며, Bar 3 계통은 비형질전환 감자인 '대지'와 비교하여 수량성과 주요 작물학적인 특성, 영양학적 특성 및 충에 대한 반응에서 차이를 발견할 수 없었고 두 감자계통과 품종의 실질적 동등성을 확인할 수 있었다. Bar 3 계통은 5배의 고농도 제초제 처리에서도 피해를 나타내지 않았으며, 형질전환 후 세대가 진행되는 동안의 수량과 식물학적인 특성은 비슷한 경향을 나타내었다. Bar 3 계통은 더뎅이병과 실금이나 2차 생장과 같은 생리적 장해 발생률이 낮았으며, 그 이유는 명확하게 구명되지 않았으나, Bar 3 계통과 같은 제초제 저항성 감자를 사용할 경우 감자 재배지역에서의 더뎅이병 발생과 토양 유실 문제를 줄일 수 있을 것으로 판단되었다. 비형질전환 감자와 형질전환 Bar 3 계통의 영양학적 특성(무기성분, 비타민 C와 아미노산 함량)과 해충(파밤나방)에 대한 반응을 분석비교한 결과, 두 감자 계통과 품종의 차이를 발견할 수 없었다.

Keywords

References

  1. An, E.B., I.E. Geoghegan, D.W. Griffiths, and J.W. McNicole. 2002. The effect of genetic transformations for pest resistance on foliar solanine-based on glycoalkaloids of potato (Solanum tuberosum). Ann. Appl. Biol. 140:143-149. https://doi.org/10.1111/j.1744-7348.2002.tb00166.x
  2. An, G., B.D. Waston, and C.C. Chiang. 1986. Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol. 81:301-305. https://doi.org/10.1104/pp.81.1.301
  3. Bayer, E., K.H. Gugel, K. Haegele, H. Hagenmaier, S. Jessipow, W.A. Koenig, and H. Zaehner. 1972. Phosphinothricin and phosphinothricyl-alanyl-alanin. Helv. Chim. Acta 55:224-239. https://doi.org/10.1002/hlca.19720550126
  4. Boiteau, G. 2005. Recruitment of adult Colorado potato beetles in Bt-transgenic potato fields. Amer. J. Potato Res. 82:379-387. https://doi.org/10.1007/BF02871968
  5. Choi, K.H., J.H. Jeon, H.S. Kim, Y.H. Joung, and H. Joung. 1999. Stability of transgenic potato plants and their progenies expressing herbicide resistant gene. J. Kor. Soc. Hort. Sci. 40:31-34.
  6. Choi, K.H., J.H. Jeon, H.S. Kim, Y.H. Joung, S.J. Cho, Y.P. Lim, and H. Joung. 1996. Development of herbicide resistant transgenic potato. Kor. J. Plant Tiss. Cult. 23:161-165.
  7. Choi, Y.E., J.H. Jeong, J.K. In, and D.C. Yang. 2003. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer. Plant Cell Rep. 21:563-567.
  8. Davies, H.V. 1996. Recent developments in our knowledge of potato transgenic biology. Potato Res. 39:411-427. https://doi.org/10.1007/BF02357947
  9. Droege-Laser, W., U. Siemeling, A. Puhler, and I. Broer. 1994. The metabolites of the herbicide L-phosphinothricin (glufosinate) - Identification, stability and mobility in transgenic, herbicideresistant, and untransformed plants. Plant Physiol. 105:159-166.
  10. Droege, W., I. Broer, and A. Puhler. 1992. Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142-151.
  11. Eliseu, S., L.F.A. Figueiredo, and D.C. Monte-neshich. 1994. Transformation of potato (S. tuberosum cv Mantiqueira) using Agrobacterium tumefaciens and evaluation of herbicide resistance. Plant Cell Rep. 13:666-670.
  12. Ghislain, M., M. Querci, M. Bonierbale, R. Golmirzaie, and R. Nels. 1997. Biotechnology and the potato. In Applications for the Developing World. CIP, Peru.
  13. Han, S.S., J.H. Jeong, K.S. Bang, and D.C. Yang. 1997. Selection of herbicide resistant potatoes transformed with phosphinothricin acetyltransferase gene. Kor. J. Weed Sci. 17:373-382.
  14. Huisman, M.J., E. Jongedijk, D.P.L. Willink, F.V.D. Wilk, and B.J.C. Cornelissen. 1992. Molecular breeding for virus resistant potato plants. Eur. J. Plant Pathol. 98:29-36.
  15. International Union for the Protection of New Variety of Plants (UPOV). 1986. Guide for the conduct of tests for distinctness, homogeneity and stability. Potato (Solanum tuberosum L.) 23(5):5-25.
  16. James, C. 2009. Global status of commercialized Biotech/GM crops. ISAAA Brief No. 41. ISAAA:Ithaca, NY.
  17. Jorge, J.C. and D.G. Larry. 2001. Midseason pest status of the cotton aphid (Homoptera: Aphididae) in California cotton: Is nitrogen a key factor? Environ. Entomol. 30:501-510. https://doi.org/10.1603/0046-225X-30.3.501
  18. Lawson, C., L. Kaniweski, R. Haley, C. Rozman, P. Newell, and N.E. Sanders. 1990. Commercial potato cultivar resistance to potato virus X and potato virus Y in transgenic Russet Berbank. Bio/Technology 8:127-134. https://doi.org/10.1038/nbt0290-127
  19. Leason, M., D. Cunliffe, D. Parkin, P.J. Lea, and B.J. Miflin. 1982. Inhibition of pea leaf glutamine synthetase by methionine sulfoximine, phosphinothricin and other glutamate analogues. Phytochem. 21:855-857. https://doi.org/10.1016/0031-9422(82)80079-4
  20. Matthews, D., H. Jones, P. Gans, S. Coates, and L.M. Smith. 2005. Toxic secondary metabolite production in genetically modified potatoes in response to stress. J. Agri. Food Chem. 53:7766-7776. https://doi.org/10.1021/jf050589r
  21. Missiou, A., K. Kalantidis, A. Boutla, S. Tzortzakaki, M. Tabler, and M. Tsagris. 2004. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol. Breed. 14:185-192.
  22. Ross, H. 1986. Potato breeding problems and perspectives. Adv. Plant Breed. 13:1-132.
  23. Tang, J.D., H.L. Collins, T.D. Metz, E.D. Earle, J.Z. Zhao, R.T. Roush, and A.M. Shelton. 2001. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J. Econo. Entomol. 94:240-247. https://doi.org/10.1603/0022-0493-94.1.240
  24. Thompson, C.J., N.R. Mowa, R. Tizard, R. Crameri, J.E. Davies, M. Lauwereys, and J. Botterman. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6:2519-2523.
  25. Yang, Y.J., K.W. Park, and J.C. Jung. 1991. The influence of pre- and post-harvest factors on the shelf life and quality of leaf lettuce. Kor. J. Food Sci. Technol. 23:133-140.
  26. Yoon, S.H., H.M. Kim, Y.M. Ye, Y.M. Kang, C.H. Suh, D.H. Nahm, S.H. Kim, and H.S. Park. 2005. IgE sensitization to the potato allergen in adult allergy patients and identification of IgE binding components: comparision between the wild and genetically modified potato. Kor. J. Intl. Med. 69: 651-659.