• Title/Summary/Keyword: LMO

Search Result 133, Processing Time 0.025 seconds

Adsorption Characteristics of Lithium Ions from Aqueous Solution using a Novel Adsorbent SAN-LMO Beads (수중의 리튬 이온 회수를 위한 새로운 흡착제인 SAN-LMO 비드의 제조)

  • Kam, Sang-Kyu;Park, Jeong-Min;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.641-646
    • /
    • 2015
  • In order to recover lithium ions from aqueous solution, a novel SAN-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with styrene acrylonitrile copolymers (SAN). The optimum condition for synthesis of SAN-LMO beads was 5 g of LMO and 3 g of SAN content. The characterization of the prepared SAN-LMO beads by SEM and XRD were confirmed that LMO was immobilized in SAN-LMO beads. The removal and the distribution coefficient of lithium ions decreased with increasing lithium ion concentration and solution pH. Even when the prepared SAN-LMO beads were reused 5 times, the leakage of LMO and the damage of SAN-LMO beads was not observed.

Preparation of a Novel PU-LMO Adsorbent by Immobilization of LMO on Polyurethane Foam for Recovery of Lithium Ions (폴리우레탄 폼에 LMO를 고정화하여 리튬이온 회수를 위한 새로운 PU-LMO 흡착제의 제조)

  • You, Hae-Na;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.277-282
    • /
    • 2014
  • In this study, PU-LMO was made by immobilization of LMO on urethane foam (PU) with using an EVA as a binder. PU-LMO was characterized by using X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The optimal ratio of EVA/LMO for preparation of PU-LMO was 0.26 gEVA/gLMO. The adsorption of lithium ions by PU-LMO was found to follow the pseudo-second-order kinetic model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity of lithium ions was 17.09 mg/g. The PU-LMO was found to have a remarkably high selectivity of lithium ions and high adsorption capacity because the distribution coefficient ($K_d$) of lithium ion was higher than those of other metal ions.

LMO 위해성과 환경모니터링 (EU 사례)

  • 김동헌
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.04a
    • /
    • pp.8-8
    • /
    • 2022
  • 지난25년간 유전자변형 생물체(LMO)는 가장 성공적인 농업 기술의 하나로 자리잡았다. 그러나 동시에 LMO가 격렬한 찬반 논란의 중심에 있었고 이로 인한 엄격한 규제의 대상이 되어 왔다. 카르타헤나 바이오안전성의정서와 LMO 위해성 심사 및 승인 등은 이러한 엄격한 규제를 대표하는 국제 혹은 국가 수준의 정책사례라고 할 수 있다. 특히 유럽연합은 역내의 반-LMO 정서를 반영하여 스페인 등 일부 국가를 제외하고는 거의 모라토리움 수준의 LMO 규제를 실시하고 있다. 유럽식품안전청(EFSA)는 유럽연합의 이러한 정책 결정에 따라 역내의 LMO 재배 및 사용에 대해 엄격한 심사업무를 담당하고 있는 기관이다. 최근EFSA는 그 동안의 심사 경험을 바탕으로 LMO의 심사 경험과 LMO환경 방출에 대한 모니터링 결과를 공유하기 위한 자료를 발간했다. 이들 자료는 EU에 비견될 수 있을 정도로 LMO에 대해 부정적인 정책적 입장을 취하고 있는 우리에게 다양한 시사점을 제공할 것으로 판단된다. 본 발표에서는 최근의 LMO 정책 환경 변화를 돌아보고, EFSA 보고서의 시사점을 살펴봄으로써 우리의 LMO 규제 정책이 합리적으로 개선될 수 있는 방향을 제시하고자 했다.

  • PDF

Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions (다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성)

  • You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.

A Study on the Difficulties Faced by High School Science Teachers in Operating LMO Laboratories (고등학교 LMO 실험실 운영에서 과학교사가 갖는 어려움에 관한 연구)

  • Seongjae Lee;Jiwon Yeo;Sang-Hak Jeon
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • As the social and economic value of living modified organisms (LMOs) increase, so do the potential risks they pose to humans and the environment. Therefore, all laboratories using LMOs must establish an LMO laboratory in accordance with the standards required by regulations. Recently, in high school, LMO-related experimental programs have been developed for their educational effects. Also, in this case, it is necessary to comply with the regulation for LMO laboratories. However, high schools are still unfamiliar with the LMO laboratory, and it is difficult for teachers to manage an LMO laboratory because its implementation applies the same standards to general research institutes. In this study, we used causal chain analysis to discover the difficulties each teacher faced while setting up an LMO laboratory by examining three cases. The difficulties experienced by teachers are as follows: the first problem is "reluctance to set up an LMO laboratory," because of "administrative tasks for laboratory registration" and "difficulty in persuading colleagues." The second problem is a difficulty for teachers to operate LMO laboratory in blind spots, due to "inflexible installation and closure," "medical waste disposal," and "LMO education that does not fit the school context." Through this study, although the difficulty of running an LMO laboratory is caused by a lack of necessity and insufficient consideration of the school context, the more fundamental cause was a lack of collaborative planning between the educational field and the operating institutions. The teachers who participate in this research suggest that "using shared LAB" and "preparing opportunities for knowledge sharing" can be considered as strategies for operating the school's LMO laboratory. We feel that this study will provide a useful reference for teachers or schools planning to build an LMO laboratory.

Preparation of PVC-LMO Bead with Dioxane Solvent and Adsorptive Properties of Lithium Ions (Dioxane을 용매로 한 PVC-LMO 비드의 제조와 Li+ 흡착특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1289-1297
    • /
    • 2014
  • In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dioxane solvent. XRD and SEM analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads prepared by dioxane solvent was about 2 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The optimum pH was pH 10. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir model was 24.25 mg/g. The thermodynamic parameters such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$ and ${\Delta}G^{\circ}$ were evaluated. The calculated ${\Delta}G^{\circ}$ was between -6.16 and -4.14 kJ/mol (below zero), indicating the spontaneous nature of $Li^+$ adsorption on PVC-LMO beads. Also, the results showed that PVC-LMO beads prepared in this study could be used for the removal of lithium ions from seawater containing coexisting ions such as $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

easyLMO : Implementation of Gene Editor for LMO (easyLMO : LMO 실험을 위한 유전자 편집 Editor 설계 및 구현)

  • Choi, Han Suk;Kim, Jong Hwa;Kim, Dong-Wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.523-524
    • /
    • 2018
  • 본 논문에서 구현한 시스템은 LMO를 생산하기 위하여 수행하는 실험과정 중 Protein coding을 변화시켜 인위적으로 변형된 생물체를 확보하기 위하여 수행하는 전처리 작업을 용이하게 수행 할 수 있도록 설계되고 구현되었다.

  • PDF

A Study on Activation Strategy of Biosafety Training for LMO Research Safety Management (시험·연구용 유전자변형생물체(LMO) 안전관리를 위한 안전교육 활성화 방안)

  • Rho, Young Hee;Min, Wan Kee;Jeong, Gyu Jin
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.98-105
    • /
    • 2014
  • Biosafety has become quite sensitive issues according to dramatic development of biotechnology and LMO(Living Modifying Organism) is one of the key issue in biosafety. This study is an exploratory research for investigating the activation strategy of biosafety training management in LMO research field. Based on the survey data, main results are derived through various statistical analysis methodology such as descriptive analysis, factor analysis, reliability analysis, analysis of variance and regression analysis. According to the analysis results, some activation strategies are required to reach the target such as extension of specialized biosafety training program, enhancement of safety consciousness from the undergraduate courses, introduction of appropriate safety regulations, unification of safety management and establishment of safety management system.