Phosphorus and Nitrogen Rate Effects to a Newly Seeded Kentucky Bluegrass

질소와 인산의 시비량이 새로 조성된 Kentucky Bluegrass에 성장에 미치는 영향

  • Lee, Sang-Kook (Research Institute for Basic Sciences, Hoseo University)
  • 이상국 (호서대학교 기초과학연구소)
  • Received : 2011.08.14
  • Accepted : 2011.09.05
  • Published : 2011.12.31

Abstract

Professional turfgrass applicators have reduced or eliminated phosphorus from their fertilization programs based on the assumption that soil phosphorus levels are supplying adequate amounts of phosphorus to the turfgrass. The previous researchers found that there were no P effects for turfgrass growth especially for mature turf. No effects may result from high P level in heavy thatch layer. The research was conducted for one year to investigate the effects of phosphorus fertilization programs on turfgrass performance, and monitor soil and plant tissue nutrient levels to determine the impact of the programs on a newly seeded Kentucky bluegrass. The nitrogen treatments were 20, 30 and $40g\;m^{-2}\;yr^{-1}$. The low, medium, and high nitrogen treatments were applied over 2, 4 and 6 applications, respectively. Nitrogen was applied using a formulation containing 30% of slow and 70% of fast release nitrogen sources that are representative of typical home lawn fertilizers. The phosphorus treatments were 0, 10 and $20g\;m^{-2}\;yr^{-1}$. Phosphorus was applied according to the application schedule for the nitrogen treatments. Kentucky bluegrass was seeded in May, 2010. The thickness of thatch layer was less than 1 cm and the first treatment was applied to Kentucky bluegrass in April, 2011. The low N rate treatment had acceptable color and quality ratings without high clipping yields. The high N rate treatment consistently had the highest color and quality ratings but also had very high clipping yields in comparison to the low and medium N rate treatments. Although there are significant differences in tissue P, Overall, there was no effect of phosphorus on color, quality, or clipping weights.

최근 잔디관리를 위한 시비프로그램에서 인산의 사용량을 줄이기 위한 연구가 많이 진행 되고 있다. 토양의 인산함량이 식물성장을 위해서 충분히 존재하더라도 시비프로그램은 질소의 양을 기준으로 이루어져 있기 때문에 인산이 불필요 하더라도 질소와 같이 시비되는 것이 일반적이다. 많은 선행연구에서 이미 조성된 잔디에서는 토양내 인산함량의 조건에 상관없이 인산의 영향이 발견되지 않았다. 이것은 뗏장으로 조성된 켄터키블루그래스의 대취층에 많은 인산의 함량이 발견되었기 때문이다. 본 연구에서는 대취층을 최소화 하기위하여 파종하여 새로 조성된 켄터키블루그래스의 성장에 질소와 인산의 영향을 측정하기 위해서 수행되었다. 질소의 시비량은 소량, 중량, 다량으로 각각 20, 30 and $40g\;m^{-2}\;yr^{-1}$로 되었으며 시비 횟수를 각각 2, 4, 6회로 구성되었다. 인산의 시비량은 0, 10 and $20g\;m^{-2}\;yr^{-1}$로 되었으며 인산은 질소시비와 함께 이루어 졌다. 소량의 질소시비는 실험기간 동안 최소수용 품질을 유지 하였으며 가장 적은 예지물을 생산하였다. 다량의 질소시비는 가장 좋은 잔디 품질을 나타내었다. 그러나 실험기간 동안 켄터키블루그래스의 성장에 대한 인산의 일관적인 영향은 발견되지 않았다. 두꺼운 대취층에 조성된 켄터키블루그래스의 성장에 인산의 영향이 없는 것과 동일하게 새로 조성된 켄터키블루그래스의 성장에도 인산의 영향은 일년 동안 발견되지 않았다.

Keywords

References

  1. Bray, R. H. and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59:39-45. https://doi.org/10.1097/00010694-194501000-00006
  2. Carrow, R.N., D.V. Waddington, and P.E. Rieke. 2001. Turfgrass soil fertility and chemical problems: Assessment and management. Ann Arbor Press, Chelsea, MI.
  3. Cassell, E.A., J.M. Dorioz, R.L. Kort, J.P. Hoffman, D.W. Meals, D. Kirschtel, and D.C. Baum. 1998. Modeling phosphorus dynamics in ecosystems: Mass balance and dynamic simulation approaches. J. Environ. Qual. 27:293-298.
  4. Christians, N. E. 2011. Fundamentals of turfgrass management. 4th ed. Wiley & Sons Inc. Hoboken, NJ.
  5. Christians, N. E. 1996. Phosphorus nutrition of turfgrass. Golf course Manage. 64(2):54-57.
  6. Christians, N. E, D. P. Martin, and K. J. Karnok. 1979. Interrelationships among nutrient elements on calcareous sand greens. Agron. J. Abstracts. p. 120.
  7. Cole, J. T., J.H. Baird, N. T. Basta, R. L. Huhnke, D. E. Storm, G. V. Johnson, M. E. Payton, M. D. Smolen, D. L. Martin, and J. C. Cole. 1997. Influence of Buffers on Pesticide and Nutrient Runoff from Bermudagrass Turf. J. Environ. Qual. 1997 26:1589-1598.
  8. Juska, F. V., A. A. Hanson. C. J. Erickson. 1965. Effects of phosphorus and other treatments on the development of red fescue, Merion, and common Kentucky bluegrass. Agron. J. 57(1): 75-78. https://doi.org/10.2134/agronj1965.00021962005700010024x
  9. Lee, S. K. 2009. Determining nutrient and irrigation programs for turfgrass. Ph.D. Thesis: Michigan State University: East Lansing, MI.
  10. Liu, Min, J. B Sartain, L. E. Trenholm, and G. L. 2008. Phosphorus requirements of St. Augustinegrass grown in sandy soils. Crop Sci. 48(3):1178-1186. https://doi.org/10.2135/cropsci2007.09.0506
  11. Lowrance, R. and J.M. Sheridan, 2005. Surface runoff water quality in a manged three zone riparian buffer. J. Environ. Qual. 34:1851-1859. https://doi.org/10.2134/jeq2004.0291
  12. Marschner, H. 1995. Mineral nutrition of higher plants. New York: Academic Press.
  13. McVey, G. R. 1967. Response of Turfgrass Seedlings to Various Phosphorus Sources. Agron. J. Abstracts. 59: p. 53.
  14. Nemitz, J. R., C. A. Bigelow, V. A. Caceres, and D. S. Richmond. 2006. Survey of home lawn soil phosphorous levels in Tippecanoe County Indiana. 2006 Annual Report: Purdue University Turfgrass Science Program. p.1-3.
  15. Nus, J. L, N. E. Christians, and K. L. Diesburg. 1993. High phosphorus applications influence soil-available potassium and Kentucky bluegrass copper content. HortScience. 28(6): p. 639-641.
  16. Pritchett, W. L. and G. C. Horn. 1966. Fertilization fights turf disorders. Better Crops and Plant Food 50(3): 22-25.
  17. Rosen, C. J. and B. P. Horgan. 2005. Regulation of phosphorus fertilizer application to turf in Minnesota: Historical perspective and opportunities for research and education. International Turfgrass Society Research Journal. 10 (Part 1): 130-135.
  18. SAS Institute Inc. 2001. The SAS system release 8.2 for Windows. SAS Inst., Cary, NC
  19. Soldat, D., A. M. Petrovic, and R. B Rao. 2005. Summary of soil test phosphorus results from home lawns and athletic fields in New York State: 2001 -2005. 2005 Annual Meeting Abstracts. p.1.
  20. Stout, W.L., A.N. Sharpley, and J. Landa. 2000. Effectiveness of Coal Combustion By-Products in Controlling Phosphorus Export from Soils. J. Environ. Qual. 2000 29: 1239-1244.
  21. Turner, B. L. and P. H. Haygarth. 2000. Phosphorus forms and concentrations in leachate under four grassland soil types. Soil Sci. Soc. Am. J. 64:1090-1099. https://doi.org/10.2136/sssaj2000.6431090x
  22. Turner, T. R. 1980. Soil test calibration studies for turfgrass establishment. Ph.D dissertation. Pennsylvania State University, University Park, PA.
  23. Waddington, D. V, T. R. Turner, J. M. Duich, and E. L. Moberg. 1978. Effect of fertilization on Penncross creeping bentgrass. Agron. J. 70(5): 713-718. https://doi.org/10.2134/agronj1978.00021962007000050005x
  24. Watschke, T. L., D. V. Waddington, D. J. Wehner, and C. L. Forth. 1977. Effect of P, K, and lime on growth, composition, and 32P absorption by Merion Kentucky bluegrass Agron. J. 69(5): 825-828. https://doi.org/10.2134/agronj1977.00021962006900050024x
  25. Westfall, R. T. and J. A. Simmons. 1971. Germination and Seedling Development of Windsor Kentucky Bluegrass as Influenced by Phosphorus and Other Nutrients. Agron. J. Abstracts. 63: p. 52.