Effects of Several Amendment Materials on Salt Accumulation and Kentucky Bluegrass (Poa pratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil

염해지 토양을 기반으로 조성된 모래 지반구조에서 토양개량제 종류에 따른 토양내 염류 집적과 켄터키 블루그래스(Poa pratensis L.)의 생육

  • 라하유 (세벨라스마렛대학교 토양학과) ;
  • 양근모 (단국대학교 녹지조경학과) ;
  • 최준수 (단국대학교 녹지조경학과)
  • Received : 2011.11.02
  • Accepted : 2011.11.25
  • Published : 2011.12.31

Abstract

The purpose of this study was to find soil-amendment materials those support the growth of Kentucky bluegrass and reduce salt accumulation at the sand based growing media in saline conditions. Rootzone profile in columns consisted of 20 cm of top soil, 20 cm coarse sand as capillary rise interruption layer and 10 cm reclaimed paddy soil as the base of the profile. Top soils were mixtures of dredged sand (DS) and amendment with compositions of 90% sand + 10% peat moss (SP), 80% sand + 10% soil + 10% bottom ash (SSoBa), 80% sand + 20% soil (SSo), 90% sand + 5% peat + 5% zeolite (SPZ), and 80% sand + 20% bottom ash (SBa). The top soil mixtures of DS and amendments were treated with and without gypsum (Gp). The columns were soaked into 5 cm depth saline water reservoir with the salinity level of $3-5dSm^{-1}$. Irrigation of $2dSm^{-1}$ saline water with rate of $5.7mm\;day^{-1}$ was applied by 3 day interval. Application of zeolite decreased SAR, application of gypsum decreased ECe of the sand amended by peat + zeolite and decreased the SAR of sand amended by bottom ash. The SP and SSoGp resulted in higher clipping dry weight of Kentucky bluegrass. The SSoGp and SPZGp showed longer root lengths. The SP and SBaGp showed higher visual quality. Addition of gypsum to soil and bottom ash treatments resulted in the increased shoot growth, whereas additional gypsum to the treatments of peat, soil and zeolite increased the root growth of Kentucky bluegrass.

본 연구는 염해지 토양을 기반으로 조성된 모래 지반구조에서 토양개량제 종류에 따른 토양내 염류집적과 켄터키 블루그래스의 생육을 평가해 보고자 수행되었다. 시험에 사용된 용기는 바닥에 10 cm 높이로 간척지 논토양을 설치 하였으며, 그 위에 20 cm 높이로 염류 차단을 위해 왕사를 설치하였다. 상토 층은 20 cm 높이로 세사를 설치 하였으며, 상토용 준설모래인 세사와 각각 부피 비율로 1) 피트모스 10% 혼합 처리(SP), 2) 일반토양 10%+bottom ash 10% 혼합 처리(SSoBA) 3) 밭흙(사양토) 20% 혼합 처리(SSo), 4) 피트모스 5%+제올라이트 5% 혼합처리(SPZ), 그리고 5) Bottom ash 20% 혼합처리 (SBa)구를 조성하였다. 또한 각각 처리에는 짚섬 처리구를 추가하여 짚섬의 염 용탈 효과를 조사하였다. 상기 용기들은 전기전도도(ECw)가 $3-5dSm^{-1}$ 수준인 물에 5 cm 깊이로 침지 처리하였다. 조성된 용기에 켄터키 블루그래스 뗏장을 식재하였다. 관수용수의 염 처리는 전기 전도도가 $2dSm^{-1}$의 농도로 하였다. 관수량은 켄터키 블루그래스의 일 증발산량 대비 100% ($5.7mmday^{-1}$)로 3일 간격으로 살수되었다. 피트모스 5%+제올라이트 5% 처리구에 짚섬 살포는 모래토양의 ECe를 감소시키는 결과를 보였다. 또한 bottom ash 20% 처리구는 토양의 SAR를 감소시키는 결과를 보였다. 유기물 10% 혼합처리(SP)와 밭흙 20% 처리구에 짚섬 살포(SSoGp)시 켄터키 블루그래스의 지상부 건물중이 증가하는 효과를 보였다. 또한 밭흙 20%에 짚섬 혼합구(SSoGp) 및 피트모스 5%+제올라이트 5%에 짚섬 혼합시(SPZGp)는 켄터키 블루그래스의 뿌리 길이가 각각 26.1, 29.5 cm로 길어지는 결과를 보였다. 피트모스 10%(SP) 처리구와 bottom ash 20%+짚섬 혼합구(SBaGp)는 켄터키 블루그래스의 가시적 품질이 각각 7.8, 7.7로 높아지는 결과를 보였다. 밭흙과 bottom ash 처리구에 짚섬을 혼합시 줄기 생육이 증가되었으며, 피트모스, 밭흙 그리고 제올라이트 처리구에 짚섬 혼합시는 지하부 생육이 증가되는 결과를 보였다.

Keywords

References

  1. Alshammary, S.F., Y.L. Qian, and S.J. Wallner. 2004. Growth response of four turfgrass species to salinity. J. Agr. Water Manage. 66:97-111. https://doi.org/10.1016/j.agwat.2003.11.002
  2. Amezketa, E., R. Aragues, and R. Gazol. 2005. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agron. J. 97:983-989. https://doi.org/10.2134/agronj2004.0236
  3. Andriano, D.C., A.L. Page, A.L. Elseewi, A.C. Chang, and L. Straughan. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems. J. Environment Quality 9:333-344.
  4. Austin, R.N. 2005. Chemical reactivity in the marine environment. CHEM 108b. laboratory. USA.
  5. Bigelow, C.A., D.C. Bowman, D.K. Cassel, and T.W. Jr. Rufty. 1999. Creeping bentgrass response to inorganic soil amendments and mechanically induced subsurface drainage and aeration. Crop Sci. 41(3):797-805.
  6. Buck, J.K., CPSSc, and L.L. LaBuz. 2005. Bottom ash fines as a soil amendment for turfgrass and sute closure - laboratory and mesocosm studies at PPL Brunner Island and Montour steam electric station. Civil & Envi Cons. Inc. 333. Baldwin road. Pittsburg, PA 15205.
  7. Carrow, R.N. and R.R. Duncan. 1998. Salt- affected turfgrass sites: assessment and management. Published by John Wiley and Sons, Inc. New Jersey.
  8. Duchaufour, P. 1982. Pedology: Pedogenesis and Classification. George Allen and Unwin, London.
  9. Freddie, C., V.L. Waltz, L. Quisenberry, and L.B. McCarty. 2003. Physical and hydraulic properties of rootzone mixes amended with inorganics for golf putting green. Agron. J. 95:395-404. https://doi.org/10.2134/agronj2003.0395
  10. Gaussoin, R., R. Sherman, L. Wit, T. McClellan, and J. Lewis. 2006. Soil physical and chemical characteristics of aging golf green. USGA Turfgrass and Environmental Research Online 5(14):1-11.
  11. Gaussoin, R.E. 2005. Physical properties of sand-based root zones over time. Proc. of Fourteenth Annual Rutgers Turfgrass System. Cook. College.
  12. Gross, J. P. 2008. A Step-by-step guide for using recycled water. An outline of the cost and maintenance practices necessary to manage this valuable resource. USGA. Green Section Record. March-April. p.2-8.
  13. Hach, C. 1996. Spectrophotometer soil and irrigation water portable laboratory manual. Js/cth 12-1-96.1ED. Printed in USA.
  14. Haisheng, H., W. Wagjie, Z. Hong, Z Yuangang, Z. Zhonghua. G. Yu, X. Huinan, and Y. Xingyang. 2008. Influence of addition of different krilium in saline-sodic soil on the seed germination and growth of cabbage. Acta Ecologia Sinica 28 (11):5338-5346. https://doi.org/10.1016/S1872-2032(09)60009-3
  15. Ho-Ok, C., H. Stepen, and E.H. Ervin. 2003. Amendments and construction systems for improving the performance of sandbased putting green. Agron .J. 95:1583-1590. https://doi.org/10.2134/agronj2003.1583
  16. Huang, Z.T, and A.M. Petrovic. 1995. Physical properties of sand as affected by clianoptilolite zeolite particle size and quality. J. Turf Management 1:1-15. https://doi.org/10.1300/J099v01n02_01
  17. Huck, M., R.N. Carrow, and R.R. Duncan. 2000. Effluent water: nightmare or dream come true?. USGA Green Section Record, March/April 38(2):15-29.
  18. Ilyas, M., R.W. Miller, and R. H. Qureshi. 1993. Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci. Soc. Am. J. 57:1580-1585. https://doi.org/10.2136/sssaj1993.03615995005700060031x
  19. Kharisun, 2005. Prospects of inhitation using of zeolite in agriculture aspects. National Seminar on Alumino Silicate Mineral, Its Application on Agriculture. Gadjah Mada University, Yogyakarta Indonesia.
  20. Korcak, R.F. 1995. Utilization of coal combustion by-products in agriculture and horticulture. Am. Soc. Agron. Madison, WI.
  21. Lavado, R.S., F. Alicia, L. Andrea, M.L. Segat, and H.F.G. Boem. 1996. Behavior of a tracer and native ions in saline soils. J. Interciencia 21(5):305-309. Buenos Aires, Argentina .
  22. Lebron, I., D.L. Suzrez, and T. Yoshida. 2006. Gypsum effect on the aggregate size and geometry on three sodic soils under reclamation. Soil Sci. Am. J. 66:92-98.
  23. Lee, J.Y., H.Y. Choi, and J.E. Yang. 2010. Physicochemical effects of bottom ash on the turfgrass growth media of sandy topsoil in golf course. Kor. Turfgrass Sci. 24(2):199-204.
  24. Marcum, K.B. 2006. Use of saline and non-potable water in the turfgrass industry; constraints and developments. Journal of Agriculture water management 80 p.132-146. https://doi.org/10.1016/j.agwat.2005.07.009
  25. McClellan, T.A., R.C. Shearman, R.E.Gaussoin, M. Mamo, C.S.Wortman, G.L. Horst, and D.B.Marx. 2007. Nutrient and chemical characterization of aging golf course putting green: esablishment and rootzone mixture treatment effects. Crop Sci. 47:193-199. https://doi.org/10.2135/cropsci2006.02.0123
  26. Miyamoto, S., and A. Chacon. 2006. Soil salinity of urban turf areas irrigated with saline water II. soil factors. Landscape and Urban Planning J. 77:28-38. https://doi.org/10.1016/j.landurbplan.2004.12.011
  27. Narum, Q.A., D.P. Michelson, and Nils Roehne. 1979. Disposal of an integrated pulp paper mill effluent by irrigation. In: EPA-600/2-79-033, USEPA, Cincinnati, OH.
  28. Poss, J.A., W.B. Russell, S.A. Bonos, and C.M. Grieve. 2010. Salt tolerance and canopy reflectance of Kentucky bluegrass cultivars. HortScience 45(6):952-960.
  29. Qadir, M., A. Ghafoor, and G. Murtaza. 2000. Amelioration strategies for saline soils: a review. Institut fur Pflanzenernahrung, Interdisziplinares Forschungszentrum, Heinrich-Buff-Ring 26-32, Giessen, Germany.
  30. Qian, Y.L., S.J. Wilhelm, and K.B. Marcum. 2001. Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Sci. 41(6):1895-1900. https://doi.org/10.2135/cropsci2001.1895
  31. Rahayu, G.M. Yang, and J.S. Choi. 2010. Effects of interruption layer for capillary rise on salt accumulation and Kentucky bluegrass Poa pratensis growth in sand growing media over the reclaimed saline soil. Kor, Turfgrass Sci. 24(2):106-116.
  32. Rahayu. G.M. Yang, and J.S. Choi. 2011. Effects of salinity level and irrigation rate on Kentucky bluegrass (Poa pratensis L.) growth and salt accumulation in sand growing media established over the reclaimed saline soil. Asian J. Turfgrass Sci. 25(1):79-88.
  33. Shainberg, I., M.E. Sumner, W.P. Miller, M.P.W. Farina, M.A.Pavan, and M.V. Fey. 1989. Use of gypsum on soils: A review, p.1-111. In:B.A.Stewart (ed.). Advanced in Soil Science. Vol. 9. Springer-Verlag New York.
  34. Shell, N., T. McIntosh, C. Severance, and A. Peterson. 1989. The agronomic land spreading of coal bottom ash: using a regulated solid waste as a source. Resource, Conservation and Recycling 2:119-129. https://doi.org/10.1016/0921-3449(89)90019-0
  35. Smets, S.M.P., M. Kuper, J.C. van Dam, and R. A. Feddes. 1997. Salinization and crop transpiration of irrigated fields in Pakistan's Punjab. Agricultural Water Management. J. 35 (1-2):43-60. https://doi.org/10.1016/S0378-3774(97)00031-0
  36. Tan, K.H. 1995. Soil sampling, preparation and analysis. The Univ. Georgia. Marcel Dekker, Inc. Hong Kong.
  37. Taylor, D.H. and G.R. Blake. 1979. Sand content of sand-soil-peat mixture for turfgrass. J. Soil Sci. Soc. Amer. J. 43:394-398. https://doi.org/10.2136/sssaj1979.03615995004300020032x
  38. Turgeon, A. J. 2002. Turfgrass management. 6 th ed. Prentice Hall, Englewood Cliffs, NJ. USA.
  39. Waltz, C. and B. McCarty. 2000. Soil amendments affect turf establishment rate. www.gcsaa/gcm/juli. Clemson Univ. South Carolina.
  40. Waltz, Jr. C., L.V. Quisenberry, and L.B. McCarty. 2003. Physical and hydraulic properties of rootzone mixes amended with inorganic for golf putting greens. Agron. J. 95:395-404. https://doi.org/10.2134/agronj2003.0395
  41. Wasura, J.P. and A.M. Petrovic. 2001. Physical stability of inorganic amendments used in turfgrass rootzones. Int. Turfgrass Soc. Research J. 9:637-641.
  42. Williams, T.M., A.H. Charles, and B.H. Smith. 1996. Forest soil and water chemistry following bark broiler bottom ash application. J. Environment Quality. 25:955-961.