DOI QR코드

DOI QR Code

심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA

  • Kasaya, Takafumi (Institute for Research on Earth Evolution, Japan Agency for Marine.Earth Science and Technology (JAMSTEC)) ;
  • Kanamatsu, Toshiya (Institute for Research on Earth Evolution, Japan Agency for Marine.Earth Science and Technology (JAMSTEC)) ;
  • Sawa, Takao (Marine Technology Center, Japan Agency for Marine.Earth Science and Technology (JAMSTEC)) ;
  • Kinosita, Masataka (Institute for Research on Earth Evolution, Japan Agency for Marine.Earth Science and Technology (JAMSTEC)) ;
  • Tukioka, Satoshi (Marine Technology Center, Japan Agency for Marine.Earth Science and Technology (JAMSTEC)) ;
  • Yamamoto, Fujio (Marine Technology Center, Japan Agency for Marine.Earth Science and Technology (JAMSTEC))
  • 투고 : 2010.08.20
  • 심사 : 2010.11.22
  • 발행 : 2011.02.28

초록

자율무인잠수정은 해수면탐사선에 비해 해저면에 더 가까이 접근할 수 있는 장점을 제공한다. 수심자료, 해저면 물질 정보와 해저면 하부 영상을 얻기 위해서는 자율무인잠수정에 탑재된 다중빔음향즉심기, 해저면영상탐사기 및 천부지층탐사기 등이 유용하게 사용된다. 일본해양연구개발기구는 3000m급 자율무인잠수정 우라시마를 개발하였다. 잠수정의 전력공급용 연료전지시스템의 공학적 개발과 시험과정을 거쳐 우라시마에는 신형 리튬이온전지 시스템이 설치되었다. 잠수정은 초기 공학적인 업무에서 과학적 사용 목적으로 개량되었다. 다양한 과학장비들이 추가되었고 2006년부터 과학적인 목적의 임무수행을 위한 잠항시험이 수행되었다. 2007년 시험운항에서 일본 기이반도 해역 북구마노분지 부근에서 우라시마의 해저면영상탐사기와 천부지층탐사기를 이용하여 고해상 음향영상자료를 획득하였다. 후방산란강도 도면에서는 많은 암설류가 확인되었고, 천부지층탐사단면에서 연구해역의 북동쪽 끝 부근의 하부구조가 확인되었다. 이러한 특징은 최신 선상지의 형성과 관련된 구조를 암시한다. 그러나 남서 해역에서는 해저면 하부 ~20 ms 부근에서 강한 반사층이 존재하는데, 이는 삭박특징으로 해석되며 현재는 더 젊은 해저 퇴적물로 덮여있다. 잠수정의 성능은 지속적으로 향상되고, 우라시마를 활용하여 많은 유용한 결과가 얻어질 것으로 기대된다.

Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

키워드

참고문헌

  1. Arita, T., and Kinoshita, Y., 1988, Explanatory notes of sedimentological map of Kumano nada 1 : 200 000 Marine geology map series No. 32: Geological survey of Japan, 26p.
  2. Kasaya, T., Tsukioka, S., Yamamoto, F., Hyakudome, T., Sawa, T., Yoshida, H., Ishibashi, S., Tahara, J., Kinoshita, M., and Aoki, T., 2007, Acoustic images of submarine landslide in western Sagami bay obtained bydeep sea AUV "URASHIMA": Journal of the Japan Society for Marine Surveys and Technology, 19, 11-17. [in Japanese with English abstract]
  3. Kasaya, T., Mitsuzawa, K., Goto, T.-N., Iwase, R., Sayanagi, K., Araki, E., Asakawa, K., Mikada, H., Watanabe, T., Takahashi, I., and Nagao, T., 2009, Trial of Multidisciplinary Observation at an Expandable Sub-Marine Cabled Station "Off-Hatsushima Island Observatory" in Sagami Bay, Japan: Sensors, 9, 9241-9254. doi:10.3390/s91109241
  4. Kelley, D. S., Karson, J. A., Früh-Green, G. L., Dana, Y. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A. S., Brazelton, W. J., Roe, K., Elend, M. J., Delacour, A., Bemasconi, S. M., Lilley, M. D., Baross, J. A., Summons, R. E., and Sylva, S. P., 2005, A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field: Science, 307, 1428-1434. doi:10.1126/science.1102556
  5. Newman,K. R., Cormier, M.-H., Weissel, K. W., Driscoll, N. W., Kastner, M., Solomon, E. A., Robertson, G., Hill, J. C., Singh, H., Camilli, R., and Eustice, R., 2008, Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break: Earth and Planetary Science Letters, 267, 341-352. doi:10.1016/j.epsl.2007.11.053
  6. Normark, W. R., McGann, M., and Sliter, R., 2004, Age of Palos Verdes submarine debris avalanche, southern California: Marine Geology, 203, 247-259. doi:10.1016/S0025-3227(03)00308-6
  7. Paull, C. K., Normark,W. R., Ussler, W., Caress, D. W., and Keaten, R., 2008, Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California: Marine Geology, 250, 258-275. doi:10.1016/j.margeo.2008.01.011
  8. Saeki, T., Inamori, T., and Takano, O., 2006,3Dseismic survey in the northern part of the Kumano Basin: Exploration Geophysics (Butsuri-Tansa), 59, 249-259. [in Japanese with English abstract]
  9. Sakuma, A., 2007, KY07–11 Cruise report of the survey cruises for development of ocean floor network system for earthquakes and tsunamis: Japan Agency for Marine–Earth Science and Technology. (in Japanese).
  10. Tsukioka, S., Aoki, T., Yoshida, H., Hyakudome, T., Sawa, T., Ishibasi, S., Mizuno, M., Tahara, J., and Ishikawa, A., 2005a, The PEM Fuel Cell System for Autonomous Underwater Vehicles: Marine Technology Society Journal, 39, 56-64. doi:10.4031/002533205787442558
  11. Tsukioka, S., Aoki, T., Yamamoto, I., Yoshida, H., Hyakudome, T., Ishibasi, S., Sawa, T., Ishikawa, A., Inada, T., and Hirokawa, K., 2005b, Prospective Deep Sea Detailed Survey with the AUV "Urashima", Proceedings of the Fifteenth International Offshore and Polar Engineering Conference, 1, 15-19.
  12. Ura, T., Asada, A., Obara, T., Nagashima, K., Sakawaki, K., Nose, Y., Kim, K., Oyabu, Y., Sugimatsu, H., and Koyama, T., 2004, Exploration of NW Rota 1 Underwater Volcano by Autonomous Underwater Vehicle "r2D4": Seisan Kenkyu, 56, 419-422. [in Japanese]
  13. Wessel, P., and Smith, W. H. F., 1998, New improved version of Generic Mapping Tools released: EOS, Transactions of the American Geophysical Union, 79, 579 doi:10.1029/98EO00426
  14. Yoerger, R. D., Bradley, M. A., Jakuba, M., German, C. R., Shank, T., and Tivey, M., 2007, Autonomous and Remotely Operated Vehicle Technology for Hydrothermal Vent Discovery, Exploration, and Sampling: Oceanography, 20, 152-161. https://doi.org/10.5670/oceanog.2007.89