• Title/Summary/Keyword: subbottom profiler

Search Result 6, Processing Time 0.023 seconds

Hydroacoustic Application of Bathymetry and Geological Survey for Efficient Reservoir Management (효율적인 저수지 관리를 위한 정밀 수심측량 및 지층탐사에 관한 연구)

  • Yun, Hong-Sik;Cho, Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.209-217
    • /
    • 2011
  • This study incorporate hydroacoustic sampling for bathymetry and sediment survey in Won Cheon reservoir, Suwon city, Korea. Bathymetric and sedimentation surveys were conducted using a echo sounder system and subbottom profiler in the reservoirs. Data were collected using echo sounder systems and subbottom profiler linked to a GPS, to maximize data accuracy and vessel use, and geo-referenced using a DGPS enabling the acoustic data to be used in a GIS. Echo sounder and subbottom survey data were merged within geographic information system(GIS) software to provide detailed visualization and analyses of current depths, pre-impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, and water storage capacity. These data and analyses are, necessary for development of long term management plans for these reservoirs and their watersheds.

Suppression of Swell Effect in 3.5KHz Subbottom Profiler Data (3.5KHz 천부지층탐사자료의 너울영향제거)

  • 이호영;구남형;박근필;김정기;김원식;강동효
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2002
  • 3.5KHz subbottom profiling systems are useful for delineating of shallow (up to 10~100m below the sea bottom) geological structure. These systems are generally used to image geological structures with less than 1m of vertical resolution. However swell in the sea is quite often higher than 1m, causing degradation in the quality of the 3.5KHz subbottom profiles. In this paper, we show the quality of digitally recorded data can be enhanced by the suppression of swell effect. Prior to suppression of swell effect, sea bottom detection procedure was applied using the characteristics that the amplitude of sea bottom reflection is high. To suppress the swell effect, we applied moving average method and high-cut filtering method using the extracted water depth of adjacent traces. Acceptable results were obtained from both methods. In the case of bad quality data or shallow data interfered with direct wave, the suppression of swell effect is difficult due to incorrect sea bottom detection.

Development of Remote Control Ship for Acquisition of Underwater Information (수중정보 획득을 위한 무인원격선체 개발)

  • Choi, Byoung-Gil;Cho, Gwang-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.65-69
    • /
    • 2008
  • This study is aimed to develope a remote control ship for acquisition of various underwater information. Remote control ship equipped with GPS, echosounder, sidescan sonar, subbottom profiler. Remote control ship is an automatic system for acquisition of inland water and coast information. For the development of remote control ship, underwater information acquisition of reservoir, dam, polluted area is expected. Also, multibeam echosounder, image sensor, water analysis sensor, etc. could be equipped in one ship. So robot-ship will be applied for the most part of industry managing water resources and preventing the flood by making bed topographic map and estimating water volumes.

  • PDF

Characteristics of Velocity and Electrical Resistivity in Gassy Sediments Results of Mudbelt Sediments in the Southeastern Inner Shelf of Korea (가스함유퇴적물에서의 음파전달속도 및 전기비저항 특성: 한국남동해역 이토대 퇴적물의 분석결과)

  • Kim, Dae-Choul;Park, Soo-Chul;Seo, Young-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.249-258
    • /
    • 2001
  • Compressional wave velocity and electrical resistivity of muddy sediments in the southeastern inner shelf of Korea were studied using nine piston core samples. The acoustic and physical properties were measured with 10 cm depth interval. Sediment structures were examined by x-radiographs of the cored sediments. Subbottom profiles were obtained by a high-resolution acoustic subbottom profiler. Acoustic turbid layers are clearly seen on the profiles, and x-radiographs of the sediments showed degassying structures formed by gas escaping. On the basis of x-radiographic images, velocities, electrical resistivities and physical properties, the sediments are divided into gassy and non-gassy sediments. The presence of gas and degassying structures result in a marked variation in velocity and electrical resistivity. It can be concluded that velocity and electrical resistivity arep arameter to recognize gassy sediment. The velocity is important parameter to indicate gassy sediment.

  • PDF

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

Swell Effect Correction for the High-resolution Marine Seismic Data (고해상 해저 탄성파 탐사자료에 대한 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.240-249
    • /
    • 2013
  • The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.