DOI QR코드

DOI QR Code

지진 관측 기록을 이용한 필리핀 마닐라의 현장 증폭 특성 및 S파 속도구조 추정

Estimation of site amplification and S-wave velocity profiles in metropolitan Manila, the Philippines, from earthquake ground motion records

  • Yamanaka, Hiroaki (The Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Ohtawara, Kaoru (The Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Grutas, Rhommel (The Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Tiglao, Robert B. (Philippine Institute of Volcanology and Seismology, CP Garcia Avenue, UP Campus) ;
  • Lasala, Melchor (Philippine Institute of Volcanology and Seismology, CP Garcia Avenue, UP Campus) ;
  • Narag, Ishmael C. (Philippine Institute of Volcanology and Seismology, CP Garcia Avenue, UP Campus) ;
  • Bautista, Bartlome C. (Philippine Institute of Volcanology and Seismology, CP Garcia Avenue, UP Campus)
  • 투고 : 2010.08.19
  • 심사 : 2010.11.07
  • 발행 : 2011.02.28

초록

본 연구에서는, 필리핀의 마닐라에서 관측된 지진 기록을 통해 얇고 깊은 토양층의 S파 속도 구조와 경험적 현장 증폭 특성을 평가하였다. 지진 기록에 빛띠 역산법 (Spectral inversion technique)을 적용하여 진원, 경로 및 국지적 현장 증폭 효과들을 평가하였다. 사용한 지진 자료는 36회의 중간급 지진들의 기록을 얻었으며, 그 중에서 마닐라의 지진 관측 망에서 강한 움직임을 보인 10곳의 관측점 자료를 이용하였다. 전파경로의 추정 Q값은 54,6f 1.1으로 모사된다. 대부분의 진원의 빛띠(스펙트럼)는 오메가-스퀘어 (omega-square) 모형으로 근사 될 수 있다. 현장 증폭 특성은 지표 지질조건에 따라 특유의 특정을 보여준다. 중앙 고지대의 증폭특성은 우세 주파수를 갖지 않는데 비해, 해안 저지대 와 마리카나(Marikina) 계곡에서의 증폭특성은 1~5Hz의 우세 주파수를 갖는다. 우리는 현장 증폭 특성을 S파 속도로 변환한 후에, 증폭 특성과 상부 30m의 평균 S파 속도 구조와의 관계를 검토하였다. 낮은 주파수대의 증폭 특성은 평균 S파 속도와 좋은 상관성을 보인다. 반면, 높은 주파수대의 증폭특성은 상부 30m내의 평균 S파 속도로 충분히 설명되지 않는다. 이것은 30m보다 낮은 심도의 평균 S파 속도와 더 많이 관련되어 있다.

In this study, empirical site amplifications and S-wave velocity profiles for shallow and deep soils are estimated using earthquake ground motion records in metropolitan Manila, the Philippines. We first apply a spectral inversion technique to the earthquake records to estimate effects of source, path, and local site amplification. The earthquake data used were obtained during 36 moderate earthquakes at 10 strong-motion stations of an earthquake observation network in Manila. The estimated Q value of the propagation path is modelled as $54.6f^{1.1}$. Most of the source spectra can be approximated with the omega-square model. The site amplifications show characteristic features according to surface geological conditions. The amplifications at the sites in the coastal lowland and Marikina Valley shows predominant peaks at frequencies from 1 to 5 Hz, while those in the central plateau are characterised by no dominant peaks. These site amplifications are inverted to subsurface S-wave velocity. We, next, discuss the relationship between the amplifications and average S-wave velocity in the top 30m of the S-wave velocity profiles. The amplifications at low frequencies are well correlated with the averaged S-wave velocity. However, high-frequency amplifications cannot be sufficiently explained by the averaged S-wave velocity in the top 30 m. They are correlated more with the average of S-wave velocity over depths less than 30 m.

키워드

참고문헌

  1. Besana, G. M., Negishi, H., and Ando, M., 1997, The three-dimensional attenuation structures beneath the Philippine archipelago based on seismic intensity data inversion: Earth and Planetary Science Letters, 151, 1-11. doi:10.1016/S0012-821X(97)00112-X
  2. Brune, J., 1970, Tectonic stress and the spectra of seismic share waves from earthquakes: Journal of Geophysical Research, 75, 4997-5009. doi:10.1029/JB075i026p04997
  3. Daligdig, J.A., and Besana, G.M., 1993, Seismological hazards in Metro Manila: Natural Disaster Prevention and Mitigation in Metropolitan Manila area: Department of Science and Technology, Philippine Institute of Volcanology and Seismology, 9-41.
  4. Daligdig, J.A., Punongbayan, R. S., Besana, G.M., and Tungol, N. M., 1997, The Marikina Valley fault system: Active faulting in eastern Metro Manila: PHIVOLCS professional paper, 1, 1-20.
  5. Gervasio, F. C., 1968, The geology, structures, and landscape development of Manila and suburbs: The Philippine Geologist, 22, 178-192.
  6. Iwata, T., and Irikura, K., 1986, Separation of source, propagation and site effects from observed S-waves: Zisin (Journal of the Seismological Society of Japan), 39, 579-593.[in Japanese with English Abstract] https://doi.org/10.4294/zisin1948.39.4_579
  7. Joyner, W. B., and Fumal, T. E., 1984, Use of measured shear wave velocity for predicting geologic and site effects on strong ground motion: Proceedings of the 8th World Conference on Earthquake Engineering, 2, 777-783.
  8. Kato, K., Takemura, M., Ikeura, T., Urao, K., and Uetake, T., 1992, Preliminary analysis for evaluation of local site effect from strong motion spectra by an inversion method: Journal of Physics of the Earth, 40, 175-191. https://doi.org/10.4294/jpe1952.40.175
  9. Kurita, K., Yamanaka, H., Ohmachi, T., Seo, K., Kinugasa, Y., Midorikawa, S., Toshinawa, T., Fujimoto, K., and Abeki, N., 2000, Strong motion observation in Metro Manila, Philippines: The 12th World Conference on Earthquake Engineering, CDROM, No.1931.
  10. Midorikawa, S., Matsuoka, M., and Sakugawa, K., 1994, Site effects on strong-motion records observed during the 1987 Chiba-ken-toho-oki, Japan, earthquake: Proceedings of the 9th Japan earthquake Engineering Symposium, 3, E085-E090.
  11. Nelson, A. R., Personius, S. F., Rimando, R. E., Punongbayan, R. S., Tungal, N. M., Mirabueno, H., and Rasdas, A., 2000, Multiple large earthquakes in the past 1500 years on a fault in Metropolitan Manila, the Philippines: Bulletin of the Seismological Society of America, 90, 73-85. doi:10.1785/ 0119990002
  12. Philippine Institute of Volcanology and Seismology, 2004, Earthquake Impact Reduction Study for Metropolitan Manila, Republic of the Philippines, Final report, 2.7-2.8.
  13. Satoh, T., 2003, Identification of damping factors from vertical array data considering obliquely incident S-waves: Application of simulated annealing method: Journal of Structural and Construction Engineering, 569, 37-45.
  14. Shibuya, J., 1983, Amplification of body waves, in Earthquake Motion and Ground Conditions: Architectural Institute of Japan, 98–105.
  15. Takemura, M., Kato, K., Ikeura, T., and Shima, E., 1991, Site amplification of S-waves from strong motion records in special relation to surface geology: Journal of Physics of the Earth, 39, 537-552. https://doi.org/10.4294/jpe1952.39.537
  16. Yamada, N., Yamanaka, H., Takezono, M., Kumada, C., and Baul-deocampo, J. R., 2003, Simulation of strong ground motion in Metro Mamina, the Philippines: Journal of Structural Engineering. Architectural Institute of Japan, 49B, 1-6.[in Japanese]
  17. Yamanaka, H., Nakamaru, A., Kurita, K., and Seo, K., 1998, Evaluation of site effects by an inversion of S-wave spectra with a constraint condition considering effects of shallow weathered layers:: Zisin (Journal of the Seismological Society of Japan), 51, 193-202. [in Japanese with English Abstract] https://doi.org/10.4294/zisin1948.51.2_193
  18. Yamanaka, H., Midorikawa, S., Kinugasa, Y., Bautista, B.C., and Rimando, R.E., 2002a, Estimation of Seismic Risk in Metro Manila, in Metro Manila, in Search of a Sustainable Future: University of the Philippines Press, 308–326.
  19. Yamanaka, H., Yamada, N., Takezono, M., Baul-deocampo, J. R., Kumada, C., Tiglao, R. B., Bautista, B. C., Takahashi, Y., and Samano, T., 2002b, Exploration of sedimentary layers in Metropolitan Manila, the Philippines, for estimation of site effects: Proceedings of the 11th Japan Earthquake Engineering Symposium, 323-328. [in Japanese with English abstract]
  20. Yamanaka, H., 2005, Comparison of performance of heuristic search methods for phase velocity inversion in shallow surface wave methods: Journal of Environmental & Engineering Geophysics, 10, 163-173. doi:10.2113/ JEEG10.2.163