DOI QR코드

DOI QR Code

Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method

고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구

  • Bae, Kang (Department of Electronic Engineering, Catholic University of Daegu) ;
  • Kim, Hwa-Min (Department of Electronic Engineering, Catholic University of Daegu)
  • 배강 (대구가톨릭대학교 전자공학과) ;
  • 김화민 (대구가톨릭대학교 전자공학과)
  • Received : 2010.08.20
  • Accepted : 2010.11.22
  • Published : 2011.01.01

Abstract

Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Keywords

References

  1. H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, Science. 299, 1377 (2003). https://doi.org/10.1126/science.1078365
  2. J. Bico, and C. Marzolin, D. Quere., Europhys. Lett. 47, 220 (1999). https://doi.org/10.1209/epl/i1999-00548-y
  3. T. Onda, S. Shibuichi, N. Satoh, and K. T. sujii, American. Chemical. Society. 12, 2125 (1996).
  4. K. Tadanaga, J. Morinaga, and T. J. Minami, J. Sol-Gel. Sci Technol. 19, 211, (2000). https://doi.org/10.1023/A:1008732204421
  5. S. Shibuichi, T. Yamamoto, T. Onda, and K. Tsujii, J. Phys. Chem. 100, 19512, (1996). https://doi.org/10.1021/jp9616728
  6. S. Coulson, I. Woodward, J. Badyal, S. A. Brewer, and C. Willis, J. Phys. Chem. 104, 8836, (2000). https://doi.org/10.1021/jp0000174
  7. S. Siau, A. Vervaet, A. V. Calster, I. Swennen, and E. Schacht, Appl. Surf. Sci. 237, 457, (2004). https://doi.org/10.1016/j.apsusc.2004.06.111
  8. J. M. Montero-Moreno, M. Sarret, and C. Muller. Surf. Coat. Tech. 201, 6352, (2007). https://doi.org/10.1016/j.surfcoat.2006.12.003
  9. V. Kapaklis, A. Georgiopoulos, P. Poulopoulos, and C. Politis, Physica. E. 38, 44, (2007). https://doi.org/10.1016/j.physe.2006.12.055
  10. D. Aurongzeb, J. Phys. Matter. 17, 2655, (2005). https://doi.org/10.1088/0953-8984/17/17/013
  11. W. Ming, D. Wu, R. van Benthem, G. de, Nano. Lett. 5, 2298, (2005). https://doi.org/10.1021/nl0517363
  12. Y. Zhang, G. H. Yang, E. T. Kang, K. G. Neoh, W. Huang, A. C. H. Huan, and S. Y. Wu. Langmuir 18, 6373, (2002). https://doi.org/10.1021/la011606j
  13. M. E. Ryan, J. L. C. Fonseca, S. Tasker, and J. P. S. Badyal, J. Phys. Chem. 99, 7060, (1995). https://doi.org/10.1021/j100018a044
  14. V. Stelmashuk, H. Biederman, D. Slavinska, J. Zemek, and M. Trchova. Vacuum 77, 131, (2005). https://doi.org/10.1016/j.vacuum.2004.08.011
  15. D. S. Bodas, A. B. Mandale, and S. A. Gangal. Appl. Surf. Sci. 245, 202, (2005). https://doi.org/10.1016/j.apsusc.2004.10.023
  16. Y. Pihosh, H. Biederman, D. Slavinska, J. Kousal, A. Choukourov, M. Trchova, A. Mackova, and A. Boldyryeva, Vacuum. 81, 38, (2006). https://doi.org/10.1016/j.vacuum.2006.02.007