• Title/Summary/Keyword: Super-hydrophobicity

Search Result 21, Processing Time 0.029 seconds

A Study on the Super-hydrophobicity of Poly(ethylene terephthalate) Fabric by TiO2 Nano-particles Coating (TiO2 나노입자 코팅에 의한 PET섬유의 초발수성에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ji-Yeon;Kim, Chang-Nam;Yeum, Jeong-Hyun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Studies on plants such as lotus leaf suggested that dual-scale structure could contribute to super-hydrophobicity. We introduced super-hydrophobicity onto poly(ethylene terephthalate)(PET) fabric with dual-scale structure by assembling $TiO_2$ nano sol. PET fabric was treated with $TiO_2$ sol, water-repellent agent using various parameters such as particle size, concentration. Morphological changes by particle size were observed using field emmission scanning electron microscopy(FE-SEM) and AFM measurement, contact angle measurement equipment. The contact angle of water was about 138.5$^{\circ}$, 125.8$^{\circ}$, 125.5$^{\circ}$ and 108.9$^{\circ}$ for PET fabric coated with 60.2nm, 120.1nm, 200nm and 410.5nm $TiO_2$ particles, compared with about 111.5$^{\circ}$ for PET fabric coated with water repellent. When we mixed particle sizes of 60.2nm and 120.1nm by 7:3 volume ratio, the contact angle of water was about 132.5$^{\circ}$. And we mixed particle sizes of 60.2nm and 200nm by 7:3 volume ratio, the contact angle of water was about 141.8$^{\circ}$. Also we mixed particle sizes of 60.2nm and 410.5nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated various surface structures to the water-repellent surfaces by using four types of $TiO_2$ nano-particles, and we found that the nanoscale structure was very important for the super-hydrophobicity.

Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구)

  • Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation

  • Gao, Jiefeng;Li, Bei;Wang, Ling;Huang, Xuewu;Xue, Huaiguo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.416-424
    • /
    • 2018
  • Oil spill and oily wastewater have now become a serious threat to the freshwater and marine environments. Porous materials with super-hydrophobicity and super-oleophilicity are good candidates for the oil adsorption and oil/water separation. Here, flexible hybrid nanofibrous membrane (FHNM) containing $SiO_2$/polyvinylidene fluoride (PVDF) microspheres was prepared by simultaneous electrospinning and electrospraying. The obtained FHNM combined the flexibility of the nanofiber mat and super-hydrophobicity of the microspheres, which could not be achieved by either only electrospinning or only electrospraying. It was found that when the weight ratio between the $SiO_2$ and PVDF reached a critical value, the $SiO_2$ nanoparticles were present on the PVDF microsphere surface, significantly improving the surface roughness and hence the contact angle of the FHNM. Compared with the pure electrospun PVDF nanofiber mat, most of the FHNMs have a higher oil adsorption capacity. The FHNM could separate the oil with water quickly under the gravity and displayed a high efficiency and good reusability for the oil/water separation. More importantly, the FHNM could not only separate the oil with the pure water but also the corrosive solution including the salt, acid and alkali solution.

Generation of hydrophobicity on the surfaces of nano and other materials using atmospheric plasmas

  • Kim, Jeong-Won;Cho, Soon-Gook;Ko, Kwang-Cheol;Woo, Hyun-Jong;Chung, Kyu-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.256-256
    • /
    • 2011
  • Using plasmas, hydrophobic surfaces are made on various substances such as polyimide films, filter paper, cotton clothes and multi-walled carbon nanotube (MWCNT) with hexamethyldisiloxane (HMDSO), trimethylchlorosilane (TMCS) and toluene reagents. Plasmas are easily and rapidly to change surface of hydrophilic materials into hydrophobic. We have also optimized processing time and maximized contact angle for super-hydrophobicity of MWCNT. Contact angles have been calculated by measuring between substance and probe liquid, and total surface free energies are determined by the Owens-Wendt equation. Figure 1 shows the measured contact angles with time and ratio of reagents on MWCNT.

  • PDF

Application of Molecular Descriptor for Prediction and Analysis of the Affinity between Alkyl Substituted Super Hydrophobic Dyes and Polypropylene Fibers (폴리프로필렌 섬유용 알킬치환 초소수성 염료의 친화력 분석과 예측을 위한 Molecular Descriptor의 활용)

  • Jang, Gyeong-Jin;Jeong, Jong-Seok;Kim, Tae-Gyeong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.77-78
    • /
    • 2008
  • Affinity between alkyl substituted super hydrophobic dyes and polypropylene fiber has been analyzed by using the molecular descriptor as a method to predict chemical and physical characteristics of compounds. Hydrophobicity of synthesized dyes calculated by LogP which is one of molecular descriptors was increased continuously as the length of alkyl substituents increased.

  • PDF

A Study on the Self-cleaning Surface Finishing Using PFOA Free Fluoric Polymer and Silica Nano-sol (PFOA Free 불소 고분자 및 실리카 나노졸을 이용한 self cleaning 표면 가공에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ran;Yeum, Jeong-Hyun;Yoon, Nam-Sik;Lee, Kyeung-Nam
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.1-11
    • /
    • 2009
  • Super-hydrophobic surface, with a water contact angle greater than $150^{\circ}$, has a self cleaning effect termed 'lotus effect'. We introduced super-hydrophobicity onto aramid/rayon mixture fabric with dual-scale structure by assembling silica nano-sol. Mixture fabric was treated with silica nano-sol, fluoric polymer using various parameters such as particle size, concentration. Silica nano-sol size were measured using particle size analyzer. Morphological changes by particle size were observed using field emission scanning electron microscopy(FE-SEM), contact angle measurement equipment. The contact angle of water was about $134.0^{\circ}$, $137.0^{\circ}$, $143.0^{\circ}$, $139.5^{\circ}$ and $139.0^{\circ}$ for mixture fabric coated with 100.2nm, 313.7nm, 558.2nm, 628.5nm and 965.4nm silica nano-sol, compared with about $120.0^{\circ}$ for mixture fabric coated with fluoric polymer. When we mixed particle sizes of 100.2nm and 558.2nm by 7:3 volume ratio, the contact angle of water was about $146.2^{\circ}$. And we mixed particle sizes of 313.7nm and 558.2nm by 7:3 volume ratio, the contact angle of water was about $141.8^{\circ}$. Also we mixed particle sizes of 558.2nm and 965.4nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated the water-repellent surfaces with various surface structures by using four types of silica nano-sol, and we found that the dual-scale structure was very important for the super-hydrophobicity.

Effect of the Addition of Propanol to PVC Solution on the Structure of Thin Film and its Surface Property (프로판올 첨가에 따른 PVC 용액의 박막 형성과 표면 특성에 미치는 영향)

  • Park, Jae Nam;Shin, Young Sik;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2015
  • Polyvinylchloride (PVC) thin films having a microporous structure could be prepared by using the solubility difference in solvents. PVC thin film with a water contact angle of $150^{\circ}$ or more was obtained from the PVC solution consisting of the mixture of tetrahydrofuran as a solvent and propanol as a non-solvent. In the drying process of dip-coated PVC film, the increase of drying temperature reduced the tendency of roughened surface, which led the decrease of surface hydrophobicity. As the addition of propanol in the solution with 1 wt% PVC increased, the uniformity of surface roughness was improved. In the case of oxygen plasma treatments, even though the surface structure of PVC thin film was not notably changed, the surface property of the film was changed from the super-hydrophobicity to hydrophilicity as a function of the plasma exposing time.

Synthesis of a Super Hydrophobic Violet Dye for Pure Polyolefin(PP/UHMWPE) Fibers (순수 폴리올레핀(PP/UHMWPE) 소재용 초소수성 보라색 염료의 합성)

  • Kim, Taekyeong;Lee, Changwhan
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.165-171
    • /
    • 2013
  • A new monoazo violet dye optimized for polyolefin fibers such as polypropylene and ultra high molecular weight polyethylene fibers was synthesized and its dyeability was investigated. Two hexyl groups were introduced to coupler, 2,5-dimethoxyaniline, in order to increase hydrophobicity of the dye. The maximum absorption wavelength was appeared at 580nm, which meant that the dye showed violet color. From the dyeing results at various conditions, the optimum dyeing was determined as $130^{\circ}C$ for 1 hour with 5% owf of dyes. The good fastness ratings to washing, rubbing were obtained showing at least 4 for both fibers. Light fastness was acceptable for polypropylene fibers giving ratings 3~4. However, relatively poor light fastness was obtained in case of ultra high molecular weight polyethylene fibers showing ratings 2.

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

Coloration of Pure Polypropylene Fiber with Super Hydrophobic Dyes; Application of Anthraquinone Derivatives with linear Alkyl Substituents

  • Kim, Tae-Kyeong;Yoon, Seok-Han;Hong, Jin-Pyo;Kim, Hong-Je;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.30-34
    • /
    • 2006
  • Polypropylene fiber was dyed with 4 super hydrophobic dyes having different alkyl derivatives on the same chromophore. Double-tailed cationic surfactant, didodecyldimethylammonium bromide(DDAB), was used to make dye-dispersant complex to improve the dispersion of dyes. As the alkyl groups are longer and the hydrophobicity is increased, the dyeability onto polypropylene fiber was improved and deep coloration was obtained. As for the fastness properties, wash fastness was relatively good, while light fastness was bit low.