DOI QR코드

DOI QR Code

Effect of the Addition of Propanol to PVC Solution on the Structure of Thin Film and its Surface Property

프로판올 첨가에 따른 PVC 용액의 박막 형성과 표면 특성에 미치는 영향

  • Park, Jae Nam (Department of Chemical Engineering, Kangwon National University) ;
  • Shin, Young Sik (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • 박재남 (강원대학교 화학공학과) ;
  • 신영식 (강원대학교 화학공학과) ;
  • 이원규 (강원대학교 화학공학과)
  • Received : 2014.08.18
  • Accepted : 2014.11.28
  • Published : 2015.02.10

Abstract

Polyvinylchloride (PVC) thin films having a microporous structure could be prepared by using the solubility difference in solvents. PVC thin film with a water contact angle of $150^{\circ}$ or more was obtained from the PVC solution consisting of the mixture of tetrahydrofuran as a solvent and propanol as a non-solvent. In the drying process of dip-coated PVC film, the increase of drying temperature reduced the tendency of roughened surface, which led the decrease of surface hydrophobicity. As the addition of propanol in the solution with 1 wt% PVC increased, the uniformity of surface roughness was improved. In the case of oxygen plasma treatments, even though the surface structure of PVC thin film was not notably changed, the surface property of the film was changed from the super-hydrophobicity to hydrophilicity as a function of the plasma exposing time.

범용성 고분자인 폴리염화비닐(PVC)의 용매에 대한 용해도 차이를 이용하여 미세다공성 구조의 표면을 갖는 초소수성 박막을 제조하고 박막의 형상에 따른 표면 특성을 분석하였다. 용매로 테트라하이드로퓨란과 비용매인 프로판올로 구성된 PVC 용액을 딥코팅으로 물과의 접촉각이 $150^{\circ}$ 이상인 초소수성 PVC 박막을 얻었다. PVC 박막 제조과정의 표면 건조공정에서 온도가 증가는 표면 거칠기를 상대적으로 감소시켜 표면의 소수성 특성 저하를 가져왔다. PVC 용액에 비용매인 프로판올의 양을 증가시키면 코팅 박막의 표면 거칠기가 균일해지고 접촉각을 증가시키는 효과를 보였다. 초소수성의 PVC 박막 표면을 산소 플라즈마 처리하면 노출시간에 따라 친수성으로 표면특성이 변환됨을 확인하였다.

Keywords

References

  1. W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1-8 (1997). https://doi.org/10.1007/s004250050096
  2. X. F. Gao and L. Jiang, Water-repellent legs of water striders, Nature, 432, 36 (2004). https://doi.org/10.1038/432036a
  3. M. Nosonovsky and B. Bhushan, Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol., 11, 535-549 (2005). https://doi.org/10.1007/s00542-005-0602-9
  4. A. Marmur and E. Bittoun, When Wenzel and Cassie are right: Reconciling local and global considerations, Langmuir, 25, 1277-1281 (2009). https://doi.org/10.1021/la802667b
  5. L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography, Langmuir, 22, 8576-8580 (2006). https://doi.org/10.1021/la061400o
  6. S. Lee and T. H. Kwon, Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf, J. Micromech. Microeng., 17, 687-692 (2007). https://doi.org/10.1088/0960-1317/17/4/003
  7. K. Liu and L. Jiang, Bio-inspired design of multiscale structures for function integration, Nanotoday, 6, 155-175 (2011). https://doi.org/10.1016/j.nantod.2011.02.002
  8. I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater., 23, 690-718 (2011). https://doi.org/10.1002/adma.201001215
  9. T. Sun, L. Feng, X. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 38, 644-652 (2005). https://doi.org/10.1021/ar040224c
  10. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem,. 28, 988-994 (1936). https://doi.org/10.1021/ie50320a024
  11. A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944). https://doi.org/10.1039/tf9444000546
  12. S. Sakka, Current sol-gel activities in Japan, J. Sol-Gel Sci. Techn., 37, 135-140 (2006). https://doi.org/10.1007/s10971-006-6433-z
  13. A. B. Gurav, S. S. Latthe, C. Kappenstein, S. K. Mukherjee, A. V. Rao, and R. S. Vhatkar, Porous water repellent silica coatings on glass by sol-gel method, Porous Mater., 18, 361-367 (2011). https://doi.org/10.1007/s10934-010-9386-0
  14. H. H. Son, J. N. Park, and W. G. Lee, Hydrophobic properties of films grown by torch-type atmospheric pressure plasma in Ar ambient containing C6 hydrocarbon precursor, Korean J. Chem. Eng., 30, 1480-1484 (2013). https://doi.org/10.1007/s11814-013-0075-y
  15. T. Hang, A. Hu, H. Ling, M. Li, and D. Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci., 256, 2400-2404 (2010). https://doi.org/10.1016/j.apsusc.2009.10.074
  16. P. N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, and C. Panayiotou, Superhydrophobic composite films produced on various substrates, Langmuir, 24, 11225-11232 (2008). https://doi.org/10.1021/la801817e
  17. T. Premkumar, Y. S. Zhou, Y. F. Lu, and K. Baskar, Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition, Appl. Mater. Interfaces, 2, 2863-2869 (2010). https://doi.org/10.1021/am100539q
  18. D. S. Won, T. K. Kim, and W. G. Lee, Effects of low pressure and atmospheric pressure plasma treatment on contact angle of polycarbonate surface, Appl. Chem. Eng., 21, 98-103 (2010).
  19. X. Li, G. Chen, Y. Ma, L. Feng, H. Zhao, L. Jiang, and F. Wang, Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent-nonsolvent coating, Polymer, 47, 506-509 (2006). https://doi.org/10.1016/j.polymer.2005.08.097
  20. Y. Kang, J. Wang, G. Yang, X. Xiong, X. Chen, L. Yu, and P. Zhang, Preparation of porous super-hydrophobic and super-oleophilic polyvinylchloride surface with corrosion resistance property, Appl. Surf. Sci., 258, 1008-1013 (2011). https://doi.org/10.1016/j.apsusc.2011.07.106
  21. X. Zhang, C. Zhang, J. M. Hankett, and Z. Chen, Molecular surface structural changes of plasticized PVC materials after plasma treatment, Langmuir, 29, 4008-4018 (2013). https://doi.org/10.1021/la4000796

Cited by

  1. CVD법을 이용한 적색 인조진주 코팅 및 제조 vol.35, pp.3, 2018, https://doi.org/10.12925/jkocs.2018.35.3.857