열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법

Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock

  • 박민영 (서울산업대학교 산업대학원 기계설계학과) ;
  • 박영일 (서울산업대학교 기계설계자동화공학부) ;
  • 구정서 (서울산업대학교 철도전문대학원 철도차량시스템공학과)
  • 투고 : 2010.01.27
  • 심사 : 2010.02.23
  • 발행 : 2010.04.26

초록

본 연구에서는 복잡한 3차원 유한요소모델 충돌거동과 등가인 1차원 동역학 모델링 방법을 개발하기 위하여 새로운 1-D 모델링 방법을 제안하였다. 충돌 거동을 잘 일치시키기 위해서는 충돌 시너지를 주로 흡수하는 압괴 구간의 특성을 정확하게 모델링하는 것이 중요하다. KHST 편성차량을 대상으로 3차원 유한요소 모델의 차체단면에 설정한 단면 옵션으로 충돌해석 시 차체 단면에 작용하는 충격하중과 변형을 추출하여 새로운 1차원 충돌동역학 모델의 스프링요소 특성으로 모델링하고, 국내철도차량 안전기준의 열차 대 열차 충돌사고 각본으로 수치해석을 수행하였다. 두 모델의 에너지 흡수량, 충돌 가속도, 충격하중-변형 등을 비교한 결과가 잘 일치하였다.

In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

키워드

참고문헌

  1. A. Marissal, B. Marguet, P. Drazetic, and Y. Ravalrd (1992) Comportement au Choc de Vehicles Guides, Revue Technique Gec Alsthom, No. 9, pp. 55-62.
  2. 건설교통부 (2005) 철도차량 안전기준에 관한 규칙, 건설 교통부령 제455호.
  3. 건설교통부 (2005) 철도차량 안전기준에 관한 지침, 건설 교통부고시 제2005-438호.
  4. 건설교통부 (2007), 철도차량 안전기준에 관한 지침, 건설 교통부고시 제2007-278호.
  5. J. S. Koo, H. J. Cho, D. S. Kim, and Y. H. Youn (2001) An evaluation of crashworthiness for the full rake, Korean Society for Railway, 4(3), pp. 94-101.
  6. G. Y. Kim, H. J. Cho, J. S. Koo, and T. S. Kwon (2008) A derivation of the standard design guideline for crashworthiness of high speed train with power cars, Transactions of KSAE, 16(6), pp. 157-167.
  7. J. S. Koo and D. H. Song (1998) Collision analysis of the full rake TGV-K on crashworthiness, Korean Society for Railway, 1(1), pp. 1-9.
  8. G. Y. Kim and J. S. Koo (2009) A study on overriding analysis using 2D dynamic model of railway vehicle, Transactions of KSAE, 9, pp. 276-279.
  9. Y. Ujita, K. Funatsu, and Y. Suzudi (2003) Crashworthiness investigation of railway carriages, Q.R. OF RTRI, 44(1), pp. 28-33. https://doi.org/10.2219/rtriqr.44.28
  10. M. Wilson and B. Ricketts (2002) Validation simulation of new railway rolling stock using the finite element method, 4th European LS-DYNA Users Conference, Crash/automotive applications(B), Session II, pp. 1-14.
  11. D. Tyrell and E. Martinez (2006) A Train-to-Train Impact Test of Crash Energy Management Passenger Rail Equipment, Volpe Report.
  12. R. Stringfellow and P. Llana (2007) Detailed Modeling of the Train-to-Train Impact Test, Federal Railroad Administration Final Report.
  13. J. S. Koo, H. J. Cho, and K. S. Rho (2003) A study on crashworthiness of Korean High Speed Train, CAE Application Conference, Crash/Impact-9, pp. 1-10.
  14. K. J. Severson, D. Tyrell, and A. B. Perlman (2000) Rail Passenger Equipment Collision Tests : Analysis of Structural Measurements, U.S. Department of Transportation, November 6, ASME RTD Vol. 19.
  15. K. Jacobsen and D. Tyrell (2003) Rail Car Impact Test with Steel Coil: Collision Dynamics, ASME RTD 2003-1655, pp. 73-82
  16. ADT/SOR (2006) Train Crashworthiness for Europe, SAFETRAIN/ final Report, 2006 Dublin Conference.
  17. W. G. Kim and J. S. Koo (2009) A study on data filtering techniques to evaluate collision accelerations of rolling stock, Korea Society for Noise and Vibration Engineering, pp. 3130- 3133.