DOI QR코드

DOI QR Code

The Interfacial Nature of TiO2 and ZnO Nanoparticles Modified by Gold Nanoparticles

  • Do, Ye-Ji (Department of Chemistry, Yeungnam University) ;
  • Choi, Jae-Soo (Center for Research Facilities, Chungnam National University) ;
  • Kim, Seoq-K. (Department of Chemistry, Yeungnam University) ;
  • Sohn, Young-Ku (Department of Chemistry, Yeungnam University)
  • Received : 2010.05.15
  • Accepted : 2010.06.05
  • Published : 2010.08.20

Abstract

The surfaces of $TiO_2$ and ZnO nanoparticles have been modified by gold (Au) nanoparticles by a reduction method in solution. Their interfacial electronic structures and optical absorptions have been studied by depth-profiling X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy, respectively. Upon Au-modification, UV-vis absorption spectra reveal a broad surface plasmon peak at around 500 nm. For the as-prepared Au-modified $TiO_2$ and ZnO, the Au $4f_{7/2}$ XPS peaks exhibit at 83.7 and 83.9 eV, respectively. These are due to a charge transfer effect from the metal oxide support to the Au. For $TiO_2$, the larger binding energy shift from that (84.0 eV) of bulk Au could indicate that Au-modification site of $TiO_2$ is different from that of ZnO. On the basis of the XPS data with sputtering depth, we conclude that cationic (1+ and 3+) Au species, plausibly $Au(OH)_x$ (x = 1-3), commonly form mainly at the Au-$TiO_2$ and Au-ZnO interfaces. With $Ar^+$ ion sputtering, the oxidation state of Ti dramatically changes from 4+ to 3+ and 2+ while that (2+) of Zn shows no discernible change based on the binding energy position and the full-width at half maximum (FWHM).

Keywords

References

  1. Haruta, M. Catal. Today 1997, 36, 153. https://doi.org/10.1016/S0920-5861(96)00208-8
  2. Haruta, M. Cattech 2002, 6, 102 https://doi.org/10.1023/A:1020181423055
  3. Meyer, R.; Lemire, C.; Shaikhutdinov, Sh. K.; Freund, H.-J. Gold Bull. 2004, 37, 72. https://doi.org/10.1007/BF03215519
  4. Pirkanniemi, K.; Sillanpaa, M. Chemosphere 2002, 48, 1047. https://doi.org/10.1016/S0045-6535(02)00168-6
  5. Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. https://doi.org/10.1039/b800489g
  6. Liu, Y.; Zhong, M.; Shan, G.; Li, Y.; Huang, B.; Yang, G. J. Phys. Chem. B 2008, 112, 6484. https://doi.org/10.1021/jp710399d
  7. Wang, X.; Kong, X.; Yu, Y.; Zhang, H. J. Phys. Chem. C 2007, 111, 3836. https://doi.org/10.1021/jp064118z
  8. Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
  9. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energy Rev. 2007, 11, 401.
  10. Wold, A. Chem. Mater. 1993, 5, 280. https://doi.org/10.1021/cm00027a008
  11. Ozgür, U.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doan, S.; Avrutin, V.; Cho, S. -J.; Morkoç, H. J. Appl. Phys. 2005, 98, 041301. https://doi.org/10.1063/1.1992666
  12. Klingshirn, C. Phys. Stat. Sol. (b) 2007, 244, 3027. https://doi.org/10.1002/pssb.200743072
  13. Woll, C. Prog. Surf. Sci. 2007, 82, 55. https://doi.org/10.1016/j.progsurf.2006.12.002
  14. Valden, M.; Paka, S.; Lai, X.; Goodman, D. W. Catal. Lett. 1998, 56, 7. https://doi.org/10.1023/A:1019028205985
  15. Chen, M.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860. https://doi.org/10.1039/b707318f
  16. Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. https://doi.org/10.1002/anie.200602454
  17. Andreeva, D. Gold Bull. 2002, 35/3, 83.
  18. Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B. J. Chem. Soc., Chem. Commun. 1973, 444.
  19. Chen, M. S.; Goodman, D. W. Science 2004, 306, 252. https://doi.org/10.1126/science.1102420
  20. Parker, S. C.; Campbell, C. T. Top. Catal. 2007, 44, 3. https://doi.org/10.1007/s11244-007-0274-z
  21. Cosandey, F.; Madey, T. E. Surf. Rev. Lett. 2001, 8, 73. https://doi.org/10.1142/S0218625X01000884
  22. Chusuei, C. C.; Lai, X.; Luo, K.; Goodman, D. W. Topics Catal. 2001, 14, 71.
  23. Raphulu, M. C.; McPherson, J.; van der Lingen, E.; Anderson, J. A.; Scurrell, M. S. Gold Bull. 2010, 43, 21. https://doi.org/10.1007/BF03214963
  24. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Anal. Chem. 2007, 79, 4215. https://doi.org/10.1021/ac0702084
  25. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X‐ray Photoelectron Spectroscopy, 2nd ed.; Chastain, J., Ed.; Perkin‐Elmer Corp.: Eden‐Prairie, MN, 1992.
  26. NIST, X‐ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5 (Web version: http://srdata. nist.gov/xps/).
  27. Liu, G.; Jaegermann, W.; He, J.; Sundstrom, V.; Sun, L. J. Phys. Chem. B 2002, 106, 5814. https://doi.org/10.1021/jp014192b
  28. Bezrodna, T.; Puchkovska, G.; Shymanovskaa, V.; Baran, J.; Ratajczak, H. J. Mol. Struc. 2004, 700, 175. https://doi.org/10.1016/j.molstruc.2003.12.057
  29. Briggs, D.; Seah, M. P. Practical Surface Analysis, 2nd ed.; Vol. 1, Wiley and Sons: 1990.
  30. Fu, Q.; Wagner, T.; Olliges, S.; Carstanjen, H.-D. J. Phys. Chem. B 2005, 109, 944. https://doi.org/10.1021/jp046091u
  31. Takeuchi, M.; Onozaki, Y.; Matsumura, H.; Uchida, H.; Kuji, T. Nucl. Instrum. Meth. B 2003, 206, 259. https://doi.org/10.1016/S0168-583X(03)00736-5
  32. Henrich, V. E.; Dresselhaus, G.; Zeiger, H. J. Phys. Rev. Lett. 1976, 36, 1335. https://doi.org/10.1103/PhysRevLett.36.1335
  33. Fu, L.; Wu, N. Q.; Yang, J. H.; Qu, F.; Johnson, D. L.; Kung, M. C.; Kung, H. H.; Dravid, V. P. J Phys. Chem. B 2005, 109, 3704. https://doi.org/10.1021/jp045117e
  34. Mrowetz, M.; Villa, A.; Prati, L.; Selli, E. Gold Bull. 2007, 40(2), 154. https://doi.org/10.1007/BF03215573
  35. Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. Surf. Interface Anal. 2006, 38, 215. https://doi.org/10.1002/sia.2180
  36. Yang, J. H.; Henao, J. D.; Raphulu, M. C.; Wang, Y. M.; Caputo, T.; Groszek, A. J.; Kung, M. C.; Scurrell, M. S.; Miller, J. T.; Kung, H. H. J. Phys. Chem. B 2005, 109, 10319. https://doi.org/10.1021/jp050818c
  37. Matthey, D.; Wang, J. E.; Wendt, S.; Matthiesen, J.; Schaub, R.; Lægsdaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692. https://doi.org/10.1126/science.1135752
  38. Zhang, P.; Sham, T. K. Phys. Rev. Lett. 2003, 90, 245502. https://doi.org/10.1103/PhysRevLett.90.245502
  39. Zhang, L.; Persaud, R.; Madey, T. E. Phys. Rev B 1997, 56, 10549. https://doi.org/10.1103/PhysRevB.56.10549
  40. Jiang, Z.; Zhang, W.; Jin, L.; Yang, X.; Xu, F.; Zhu, J.; Huang, W. J. Phys. Chem. C 2007, 111, 12434. https://doi.org/10.1021/jp073446b
  41. Radnik, J.; Mohr, C.; Claus, P. Phys. Chem. Chem. Phys. 2003, 5, 172. https://doi.org/10.1039/b207290d
  42. Wahlstrom, E.; Lopez, N.; Schaub, R.; Thostrup, P.; Ronnau, A.; Africh, C.; Laegsgaard, E.; Norskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2003, 90, 026101. https://doi.org/10.1103/PhysRevLett.90.026101
  43. Phala, N. S.; Klatta, G.; van Steen, E.; French, S. A.; Sokolb, A. A.; Catlow, C. R. A. Phys. Chem. Chem. Phys. 2005, 7, 2440. https://doi.org/10.1039/b501266j
  44. Mosbacker, H. L.; Strzhmechny, Y. M.; White, B. D.; Smith, P. E.; Look, D. C.; Reynolds, D. C.; Litton, C. W.; Brillson, L. J. Appl. Phys. Lett. 2005, 87, 012102. https://doi.org/10.1063/1.1984089

Cited by

  1. Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation vol.46, pp.22, 2011, https://doi.org/10.1007/s10853-011-5503-y
  2. Visible-light-sensitive nanoscale Au–ZnO photocatalysts vol.15, pp.5, 2013, https://doi.org/10.1007/s11051-013-1606-5
  3. High Density Unaggregated Au Nanoparticles on ZnO Nanorod Arrays Function as Efficient and Recyclable Photocatalysts for Environmental Purification vol.9, pp.18, 2013, https://doi.org/10.1002/smll.201300424
  4. Fine structural tuning of whereabout and clustering of metal–metal oxide heterostructure for optimal photocatalytic enhancement and stability vol.6, pp.21, 2014, https://doi.org/10.1039/C4NR03373F
  5. Anchoring Mechanism of ZnO Nanoparticles on Graphitic Carbon Nanofiber Surfaces through a Modified Co-Precipitation Method to Improve Interfacial Contact and Photocatalytic Performance vol.16, pp.15, 2015, https://doi.org/10.1002/cphc.201500529
  6. Hydrogen peroxide sensitive hemoglobin-capped gold nanoclusters as a fluorescence enhancing sensor for the label-free detection of glucose vol.5, pp.42, 2015, https://doi.org/10.1039/C5RA00335K
  7. Nanopowder as a Recyclable Heterogeneous Catalyst for the Synthesis of 1,6-Naphthyridines in Water vol.80, pp.4, 2015, https://doi.org/10.1002/cplu.201402405
  8. Facile synthesis of titanium dioxide-cadmium sulfide nanocomposite using pulsed laser ablation in liquid and its performance in photovoltaic and photocatalytic applications vol.41, pp.10, 2017, https://doi.org/10.1002/er.3721
  9. /Pt(1 1 1) inverse model catalyst vol.30, pp.26, 2018, https://doi.org/10.1088/1361-648X/aac6ff
  10. Au‐TiO 2 ‐ZnO sandwich‐structured composite films with enhanced ultraviolet‐light photocatalytic activity vol.16, pp.12, 2021, https://doi.org/10.1049/mna2.12088
  11. Preparation of uniform gold nanoparticles of different quantity deposited on zinc oxide nanorods for photoelectrochemical water splitting vol.287, pp.p3, 2010, https://doi.org/10.1016/j.chemosphere.2021.132168