DOI QR코드

DOI QR Code

Bayesian Model for the Classification of GPCR Agonists and Antagonists

  • Choi, In-Hee (Institute of Life Science & Biotechnology, Yonsei University) ;
  • Kim, Han-Jo (Bioinformatics & Molecular Design Research Center) ;
  • Jung, Ji-Hoon (Department of Life Science & Biotechnology, Yonsei University) ;
  • Nam, Ky-Youb (Bioinformatics & Molecular Design Research Center) ;
  • Yoo, Sung-Eun (Korea Research Institute of Chemical Technology) ;
  • Kang, Nam-Sook (Korea Research Institute of Chemical Technology) ;
  • No, Kyoung-Tai (Institute of Life Science & Biotechnology, Yonsei University)
  • Received : 2010.03.11
  • Accepted : 2010.06.28
  • Published : 2010.08.20

Abstract

G-protein coupled receptors (GPCRs) are involved in a wide variety of physiological processes and are known to be targets for nearly 50% of drugs. The various functions of GPCRs are affected by their cognate ligands which are mainly classified as agonists and antagonists. The purpose of this study is to develop a Bayesian classification model, that can predict a compound as either human GPCR agonist or antagonist. Total 6627 compounds experimentally determined as either GPCR agonists or antagonists covering all the classes of GPCRs were gathered to comprise the dataset. This model distinguishes GPCR agonists from GPCR antagonists by using chemical fingerprint, FCFP_6. The model revealed distinctive structural characteristics between agonistic and antagonistic compounds: in general, 1) GPCR agonists were flexible and had aliphatic amines, and 2) GPCR antagonists had planar groups and aromatic amines. This model showed very good discriminative ability in general, with pretty good discriminant statistics for the training set (accuracy: 90.1%) and a good predictive ability for the test set (accuracy: 89.2%). Also, receiver operating characteristic (ROC) plot showed the area under the curve (AUC) to be 0.957, and Matthew's Correlation Coefficient (MCC) value was 0.803. The quality of our model suggests that it could aid to classify the compounds as either GPCR agonists or antagonists, especially in the early stages of the drug discovery process.

Keywords

References

  1. Fredriksson, R.; Lagerstrom, M. C.; Lundin, L.-G.; Schioth, H. B. Mol. Pharmacol. 2003, 63, 1256. https://doi.org/10.1124/mol.63.6.1256
  2. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. https://doi.org/10.1126/science.1150577
  3. Bleicher, K. H.; Green, L. G.; Martin, R. E.; Rogers-Evans, M. Curr. Opin. Chem. Biol. 2004, 8, 287. https://doi.org/10.1016/j.cbpa.2004.04.008
  4. Brink, C. B.; Harvey, B. H.; Bodenstein, J.; Venter, D. P.; Oliver, D. W. Br. J. Clin. Pharmacol. 2004, 57, 373. https://doi.org/10.1111/j.1365-2125.2003.02046.x
  5. Ellis, C. Nat. Rev. Drug Discov. 2004, 3, 577. https://doi.org/10.1038/nrd1458
  6. Chen, B.; Harrison, R. F.; Papadatos, G.; Willett, P.; Wood, D. J.; Lewell, X. Q.; Greenidge, P.; Stiefl, N. J. Comput. Aided Mol. Des. 2007, 21, 53. https://doi.org/10.1007/s10822-006-9096-5
  7. Manallack, D. T.; Pitt, W. R.; Gancia, E.; Montana, J. G.; Livinstone, D. J.; Ford, M. G.; Whitley, D. C. J. Chem. Inf. Comp. Sci. 2002, 42, 1256. https://doi.org/10.1021/ci020267c
  8. von Korff, M.; Steger, M. J. Chem. Inf. Comp. Sci. 2004, 44, 1137. https://doi.org/10.1021/ci0303013
  9. Balakin, K. V.; Lang, S. A.; Skorenko, A. V.; Tkachenko, S. E.; Ivashchenko, A. A.; Savchuk, N. P. J. Chem. Inf. Comp. Sci. 2003, 43, 1553. https://doi.org/10.1021/ci034114g
  10. Vogt, I.; Ahmed, H.; Auer, J.; Bajorath, J. Mol. Divers. 2008,12, 25. https://doi.org/10.1007/s11030-008-9071-2
  11. Selzer, P.; Ertl, P. QSAR Comb. Sci. 2005, 24, 270. https://doi.org/10.1002/qsar.200420071
  12. Xia, X.; Maliski, E. G.; Gallant, P.; Rogers, D. J. Med. Chem. 2004, 47, 4463. https://doi.org/10.1021/jm0303195
  13. Hassan, M.; Brown, R. D.; Varma-O’Brien, S.; Rogers, D. Mol. Divers. 2006, 10, 283. https://doi.org/10.1007/s11030-006-9041-5
  14. Prathipati, P.; Ma, N. L.; Keller, T. H. J. Chem. Inf. Model. 2008, 48, 2362. https://doi.org/10.1021/ci800143n
  15. Ertl, P.; Roggo, S.; Schuffenhauer, A. J. Chem. Inf. Model. 2008, 48, 68. https://doi.org/10.1021/ci700286x
  16. Scitegic Inc., 9665 Chesapeake Dr., Suite 401, San Diego, CA 92123, USA, PipeLine Pilot 7.0.1, 2008, version 7.0.1.
  17. Okuno, Y.; Tamon, A.; Yabuuchi, H.; Niijima, S.; Minowa, Y.; Tonomura, K.; Kunimoto, R.; Feng, C. Nucl. Acids Res. 2008, 36, D907. https://doi.org/10.1093/nar/gkm948
  18. Science Integrity${\circledR}$. http://integrity.prous.com ${\copyright}$ Prous Science, a Thomson Scientific business, Stamford, CT, USA, 2007.
  19. PreADMET 2.0, BMDRC, Seoul, Korea, 2008.
  20. $Spotfire^{\circledR}\;DecisionSite^{\circledR}$ 9.1.1. http://spotfire.tibco.com, Somerville, MA, USA, 2008.
  21. Sciabola, S.; Carosati, E.; Cucurull-Sanchez, L.; Baroni, M.; Mannhold, R. Bioorg. Med. Chem. 2007, 15, 6450. https://doi.org/10.1016/j.bmc.2007.06.051
  22. Rogers, D.; Brown, R. D.; Hahn, M. J. Biomol. Screen. 2005, 10, 682. https://doi.org/10.1177/1087057105281365
  23. Matthews, B. W. Biochim. Biophys. Acta 1975, 405, 442. https://doi.org/10.1016/0005-2795(75)90109-9
  24. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C. A.; Nielsen, H. Bioinformatics 2000, 16, 412. https://doi.org/10.1093/bioinformatics/16.5.412
  25. Lescot, E.; Bureau, R.; Rault, S. Peptides 2008, 29, 680. https://doi.org/10.1016/j.peptides.2007.09.019
  26. Lescot, E.; Sopkova-de Oliveira Santos, J.; Dubessy, C.; Oulyadi, H.; Lesnard, A.; Vaudry, H.; Bureau, R.; Rault, S. J. Chem. Inf. Model. 2007, 47, 602. https://doi.org/10.1021/ci6003948
  27. Radestock, S.; Weil, T.; Renner, S. J. Chem. Inf. Model. 2008, 48, 1104. https://doi.org/10.1021/ci8000265