DOI QR코드

DOI QR Code

mPW1PW91 Calculated and Experimental UV/IR Spectra of Unsymmetrical trans-Stilbenes

  • Choe, Jong-In (Department of Chemistry, Chung-Ang University) ;
  • Park, Seong-Jun (Department of Chemistry, Chung-Ang University) ;
  • Cho, Chul-Hee (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Chul-Bae (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Received : 2010.04.26
  • Accepted : 2010.06.07
  • Published : 2010.08.20

Abstract

Quantum mechanical properties of unsymmetrical and unfunctionalized trans-stilbene derivatives 1-3, which had been prepared by solid-phase parallel syntheses, were characterized using mPW1PW91/6-311G(d,p) (hybrid HF-DF) calculations. The total electronic energies, normal vibrational modes, Gibbs free energies, and HOMOs and LUMOs of sixteen different structures from three different groups were analyzed. The energy differences between the HOMOs and LUMOs of the various unsymmetrical trans-stilbenes are in accord with the maximum absorption peaks of the experimental UV spectra of 1-3. The calculated normal vibrational modes of 21 were comparable with its experimental IR spectrum. The $\pi$-conjugation in the para-connected biphenyl group of 2 is better than the one in the metaconnected biphenyl group on the shorter side of 3.

Keywords

References

  1. Walter, G.; Liebl, R.; Von Angerer, E. Bioorg. Med. Chem. 2004, 14, 4659. https://doi.org/10.1016/j.bmcl.2004.06.098
  2. Chávez, D.; Chai, H. B.; Chagwedera, T. E.; Gao, Q.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. Tetrahedron Lett. 2001, 42, 3685. https://doi.org/10.1016/S0040-4039(01)00560-3
  3. Iliya, I.; Ali, Z.; Tanaka, T.; Iinuma, M.; Furusawa, M.; Nakaya, K.-i.; Murata, J.; Darnaedi, D.; Matsuura, N.; Ubukata, M. Phytochemistry 2003, 62, 601. https://doi.org/10.1016/S0031-9422(02)00670-2
  4. Huang, K.-S.; Li, R.-L.; Wang, Y.-H.; Lin, M. Planta. Med. 2001, 67, 61. https://doi.org/10.1055/s-2001-10875
  5. Savouret, J. F.; Quesne, M. Biomed. Pharmacother. 2002, 56, 84. https://doi.org/10.1016/S0753-3322(01)00158-5
  6. Gusman, J.; Malonne, H.; Atassi, G. Carcinogenesis 2001, 22, 1111. https://doi.org/10.1093/carcin/22.8.1111
  7. Fremont, L. Life Sci. 2000, 66, 663. https://doi.org/10.1016/S0024-3205(99)00410-5
  8. Momotake, A.; Arai, T. J. Photochem. Photobiol. A: Photochem. Reviews 2004, 5, 1. https://doi.org/10.1016/j.jphotochemrev.2004.01.001
  9. Imai, M.; Arai, T. Tetrahedron Lett. 2002, 43, 5265. https://doi.org/10.1016/S0040-4039(02)01063-8
  10. Meier, H. Angew. Chem., Int. Ed. 1992, 31, 1399. https://doi.org/10.1002/anie.199213993
  11. Feringa, L.; Jager, W. F.; de Lange, B. Tetrahedron 1993, 49, 8267. https://doi.org/10.1016/S0040-4020(01)81913-X
  12. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. https://doi.org/10.1038/347539a0
  13. Jin, Y.; Kim, J.; Park, S. H.; Kim, H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 1807. https://doi.org/10.5012/bkcs.2005.26.11.1807
  14. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402. https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  15. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. https://doi.org/10.1038/357477a0
  16. Burns, P. L.; Holmes, A. B.; Kraft, A.; Bradley, D. D. C.; Brown, A. R.; Friend,R. H. Nature 1992, 356, 47. https://doi.org/10.1038/356047a0
  17. Gierschner, J.; Cornil, J.; Egelhaaf, H.-J. Adv. Mater. 2007, 19, 173. https://doi.org/10.1002/adma.200600277
  18. Hohnholz, D.; Schweikart, K.-H.; Subramanian, L. R.; Wedel, A.; Wischert, W.; Hanack, M. Synth. Met. 2000, 110, 141. https://doi.org/10.1016/S0379-6779(99)00291-X
  19. Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6
  20. Hohloch, M.; Segura, J. L.; Doettinger, S. E.; Hohnholz, D.; Steinhuber, E.; Spreitzer, H.; Hanack, M. Synth. Met. 1997, 84, 319. https://doi.org/10.1016/S0379-6779(97)80765-5
  21. Dottinger, S. E.; Hohloch, M.; Hohnholz, D.; Segura, J. L.; Steinhuber, E.; Hanack, M. Synth. Met. 1997, 84, 267. https://doi.org/10.1016/S0379-6779(97)80745-X
  22. Mooney III, W. F.; Brown, P. E.; Russell, J. C.; Costa, S. B.; Pedersen, L.G.; Whitten, D. G. J. Am. Chem. Soc. 1984, 106, 5659. https://doi.org/10.1021/ja00331a041
  23. Cho, C.-H.; Park, K. Bull. Korean Chem. Soc. 2007, 28, 1159. https://doi.org/10.5012/bkcs.2007.28.7.1159
  24. Cho, C.-H.; Kim, C.-B.; Park, K. J. Comb. Chem. 2010, 12, 45. https://doi.org/10.1021/cc900099g
  25. HyperChem Release 7.5, Hypercube, Inc.: Waterloo, Ontario, Canada, 2002.
  26. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465. https://doi.org/10.1007/BF02705436
  27. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664. https://doi.org/10.1063/1.475428
  28. Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 19046. https://doi.org/10.1021/jp0534434
  29. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. https://doi.org/10.1021/jp000497z
  30. Exploring Chemistry with Electronic Structure Methods (Second Edition), Foresman J. B.; Frisch A.; Gaussian Inc. Pittsburgh, PA, 1996. Page 63
  31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross,J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.
  32. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061. https://doi.org/10.5012/bkcs.2004.25.7.1061