DOI QR코드

DOI QR Code

Structure and Electrochemical Characterization of LiNi0.5Mn0.3Co0.2O2 as the Cathode Material Synthesized by Simple-combustion Method

단순 연소법으로 합성한 LiNi0.5Mn0.3Co0.2O2 양극 활물질의 구조 분석 및 전기화학적 특성 연구

  • Received : 2010.10.07
  • Accepted : 2010.10.25
  • Published : 2010.11.30

Abstract

$LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ active material was prepared by simple-combustion method and investigated as the cathode material for li-ion battery. The structural characterization was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The XRD patterns of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ sample was indicated a phase of layered hexagonal structure. The size of particles has not uniform diameters ranging from 100 to 300 nm. The electrochemical performance of the $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ was measured by Cyclic Voltammetry and galvanostatics. The $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ shows the discharge capacity of ~162 mAh/g in the range of 2.8 to 4.3 V at the first cycle.

$LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$의 리튬이온 이차전지 양극 물질로의 특성을 연구하기 위해서 단순 연소합성법을 이용하여 합성했다. 합성된 물질의 구조적 특징을 분석하기 위하여 X-선 회절분석(XRD)과 주사전자현미경 (FE-SEM)을 측정하였다. X-선 회절분석을 통하여 합성된 $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$시료가 육방정계 층상구조가 형성된 것을 확인하였다. FE-SEM을 통해 측정한 결과 $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ 입자는 일정한 형태를 가지지 않았으며 크기는 대략 100~300 nm의 크기임을 확인할 수 있었다. 그리고 전기화학적 특성을 측정하기 위하여 충 방전 용량 측정과 CV(Cyclic Voltammetry)를 측정하였다. 2.8 V에서 4.3 V까지 충 방전 용량을 측정한 결과 ~162 mAh/g의 초기 방전 용량을 가졌다.

Keywords

References

  1. T. Ohzuku, 'Electrochemistry and structural chemistry of $LiNiO_2$ cathode' J. Electrochem. Soc., 140, 1862 (1993). https://doi.org/10.1149/1.2220730
  2. P. barboux, 'The use of acetates as precursors for the low-temperature synthesis of $LiMn_2O_4$ and $LiCoO_2$ intercalation compounds' J. Solid State Chem., 94, 185 (1991). https://doi.org/10.1016/0022-4596(91)90231-6
  3. G. CEDER and S. K. MISHRA, 'The stability of orthorhombic and monoclinic-layered $LiMnO_2$' J. Electrochem. Soc., 2(11), 550 (1999).
  4. H. Yu-Shi, 'Synthesis and characterization of submicronsized $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ by a simple self-propagating solid-state metathesis method' J. Power Sources, 163, 1053 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.061
  5. ZHONG Sheng-kui, 'Synthesis and electrochemical performances of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode materials' Trans. Nonferrous Met. Soc. China, 19, 1499 (2009). https://doi.org/10.1016/S1003-6326(09)60059-5
  6. T. Ohzuku, 'Comparative Study of $LiCoO_2,\;LiNi_{1/2}Co_{1/2}O_2$ and $LiNiO_2$ for 4 Volt Secondary Lithium Cells' J. Electrochim. Acta, 38, 1159 (1993). https://doi.org/10.1016/0013-4686(93)80046-3
  7. M. Okada, '8th International Meeting on Lithium Batteries, Extended, Abstracts' II-B-10 424 (1996).
  8. E. Rossen, 'Structure and electrochemistry of $Li_xMn_yNi_{1-y}O_2 $' J. Solid State Ionics, 57, 311 (1992). https://doi.org/10.1016/0167-2738(92)90164-K
  9. Decheng Li, 'Structure, morphology and electrochemical properties of $LiNi_{0.5}Mn_{0.5x}Co_xO_2 $prepared by solid state reaction' J. Power Sources, 148, 85 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.006
  10. Y. Gao, 'Novel $LiNi_{1-x}Ti_{x/2}Mg_{x/2}O_2$ Compounds as Cathode Materials for Safer Lithium-Ion Batteries' J. Electrochem. Soc., 1, 117 (1998).
  11. J. Cho, 'Electrochemical Properties and Thermal Stability of $LiaNi_{1−x}Co_xO_2 $Cathode Materials' J. Electrochem. Soc., 146, 3571 (1999). https://doi.org/10.1149/1.1392516
  12. W. Li, 'In situ x-ray diffraction and electrochemical studies of $Li_{1-x}NiO_2$' J. Solid State Ionics, 67, 123 (1993). https://doi.org/10.1016/0167-2738(93)90317-V
  13. T. Ohzuku, 'Layered lithium insertion material of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2 $ for lithium-ion batteries' Chem. Lett., 30, 642 (2001). https://doi.org/10.1246/cl.2001.642
  14. D.D. MacNeil, 'Structure and electrochemical of $Li[Co_xNi_{1-2x}Mn_x]O_2 (0{\leq}x{\leq}1/2)$' J. Electrochem. Soc., 149, A1332 (2002). https://doi.org/10.1149/1.1505633
  15. I. Belharouak, '$Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2 $as a suitable cathode for high power applications' J. Power Sources, 123, 247 (2003). https://doi.org/10.1016/S0378-7753(03)00529-9
  16. J. Choi, 'Structural and electrochemical characterization of the layered $LiNi_{0.5-y}Mn_{0.5-y}Co_{2y}O_2\;(0{\leq}2y{\leq}1)$ cathodes' J. Solid State Chem., 176, 2251 (2005).
  17. D.C. Li, 'Effect of synthesis method on the electrochemical performance of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$' J. Power Sources, 132, 150 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.016
  18. K.M. Shaju, 'Performance of layered $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ as cathode for Li-ion batteries' J. Electrochim. Acta, 48, 145 (2002). https://doi.org/10.1016/S0013-4686(02)00593-5
  19. J.R. Mueller-Neuhaus, 'Understanding Irreversible Capacity in $Li_xNi_{1-y}Fe_yO_2 $Cathode Materials' J. Electrochem. Soc., 147, 3598 (2000). https://doi.org/10.1149/1.1393945
  20. K.M. Shaju, 'Performance of layered $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2 $ as cathode for Li-ion batteries' J. Electrochim. Acta, 48, 145 (2002). https://doi.org/10.1016/S0013-4686(02)00593-5
  21. Z. Liu, 'Synthesis and characterization of $LiNi_{1-x-y}Co_xMn_yO_2$ as the cathode materials of secondary lithium batteries' J. Power Sources, 81, 416 (1999). https://doi.org/10.1016/S0378-7753(99)00221-9

Cited by

  1. The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.149
  2. Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2Positive Electrode Materials by the Addition of nano-Al2O3during the Synthetic Process vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.80
  3. The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x = 0, 0.01) by Barium Doping vol.17, pp.4, 2014, https://doi.org/10.5229/JKES.2014.17.4.222