DOI QR코드

DOI QR Code

Pore Gradient Nickel-Copper Nanostructured Foam Electrode

기공 경사화된 나노 구조의 니켈-구리 거품 전극

  • Choi, Woo-Sung (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2010.10.07
  • Accepted : 2010.11.08
  • Published : 2010.11.30

Abstract

Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

기공 경사화된 마이크론 단위의 구조 틀 및 나노 수지상 구조 벽을 가지는 니켈-구리 거품 전극을 전기화학적인 방법으로 합성하였다. 전해 도금 시 순수한 니켈은 치밀한 층으로 성장하는 양상을 보였으나, 구리와 함께 도금시키는 경우 그 성장 양상이 순수한 니켈과는 매우 다르게 관찰되었다. 특히, 첨가제로써 염소 이온의 농도가 증가함에 따라 니켈-구리 도금 층의 수지상 성장이 뚜렷해지는 모습을 보였다. 또한, 기재와 먼 부분일수록 도금 층 내 구리 대비 니켈의 상대적인 양이 감소하였으며, 염소 이온 농도가 높아짐에 따라 전 도금 층에 걸쳐 니켈의 양이 증가하였다. 수지상 구조 벽의 가지 내부 조성을 분석한 결과, 중심부로 갈수록 구리 함량이 점차 높아지는 조성 구배를 확인하였으며, 적절한 열처리를 통해 상호 확산을 유도하여 균일한 조성의 니켈-구리 합금을 얻어낼 수 있었다. 본 연구를 통해 제작된 재료는 기능성 전기 화학 장치용 고성능 전극에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. H.-C. Shin, J. Dong, and M. Liu, 'Nanoporous structures prepared by and electrochemical deposition process' Adv. Mater., 15(19), 1610 (2003). https://doi.org/10.1002/adma.200305160
  2. H.-C. Shin and M. Liu, 'Copper foam structures with highly porous nanostructured walls' Chem. Mater., 16, 5460 (2004). https://doi.org/10.1021/cm048887b
  3. N. D. Nikolic, K. I. Popov, Lj. J. Pavlovic, and M. G. Pavlovic, 'Morphologies of copper deposits obtained by the electrodeposition at high overpotentials' Surf. Coat. Technol., 201, 560 (2006). https://doi.org/10.1016/j.surfcoat.2005.12.004
  4. Y. Li, W.-Z. Jia, Y.-Y. Song, and X.-H. Xia, 'Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template' Chem. Mater., 19, 5758 (2007). https://doi.org/10.1021/cm071738j
  5. Y. Li, Y.-Y. Song, C. Yang, and X.-H. Xia, 'Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose' Electrochem. Commun., 9, 981 (2007). https://doi.org/10.1016/j.elecom.2006.11.035
  6. H.-C. Shin and M. Liu, 'Three-Dimensional Porous Copper-Tin Alloy Electrodes for Rechargeable Lithium Batteries' Adv. Funct. Mater., 15(4), 582 (2005). https://doi.org/10.1002/adfm.200305165
  7. T. Jiang, S. Zhang, X. Qiu, W. Zhu, and L. Chen, 'Preparation and characterization of tin-based three-dimensional cellular anode for lithium ion battery' J. Power Sources 166, 503 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.017
  8. C. A. Bernardo, I. Alstrup and, J. R. Rostrup-Nielsen, 'Carbon deposition and methane steam reforming on silica-supported Ni-Cu catalysts' J. Catal., 96, 517 (1985). https://doi.org/10.1016/0021-9517(85)90320-3
  9. M. Boder and R. Dittmeyer, 'Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas' J. Power Sources, 155, 13 (2006). https://doi.org/10.1016/j.jpowsour.2004.11.075
  10. D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, 'Copper ion reduction catalyzed by chloride ions' J. Electroanal. Chem., 532, 353 (2002). https://doi.org/10.1016/S0022-0728(02)01050-1
  11. W. Shao and G. Zangari, 'Dendritic growth and morphology selection in copper electrodeposition from anodic sulfate solutions containg chlorides' J. Phys. Chem. C., 113, 10097 (2009). https://doi.org/10.1021/jp8095456
  12. Y. Tsuru, M. Nomura, and F. R. Foulkes, 'Effect of chloride, bromide and iodide ions on internal stress in films deposited during high speed nickel electroplating form a nickel sulfamate bath' J. Appl. Electrochem., 30, 231 (2000). https://doi.org/10.1023/A:1003970925918
  13. A. M. Alfantazi and A.Shakshouki, 'The effects of chloride ions on the electrowinning of nickel from sulfate electrolytes' J. Electrochem. Soc., 149(10), C506 (2002). https://doi.org/10.1149/1.1506933
  14. R. Qui, X. L. Zhang, R. Qiao, Y. Li, Y. I. Kim, and Y. S. Kang, 'CuNi dendritic material: Synthesis, mechanism discussion, and application as glucose sensor' Chem. Mater., 19(17), 4174 (2007). https://doi.org/10.1021/cm070638a
  15. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, 'Chloride ion catalysis of the copper deposition reaction' J. Electrochem. Soc. 142, L87 (1995). https://doi.org/10.1149/1.2044254
  16. A. Ollivier, L. Muhr, S. Delbos, P. P. Grand, M. Matlosz, and E. Chassaing 'Copper-nickel codeposition as a model for mass-transfer characterization in copper-indium-selenium thin-film production' J. Appl. Electrochem., 39, 2337 (2009) https://doi.org/10.1007/s10800-009-9918-y