DOI QR코드

DOI QR Code

Development of LSM-Coated Crofer Mesh for Current Collectors in Solid Oxide Fuel Cells

LSM이 코팅된 고체산화물 연료전지용 Crofer Mesh 집전체 개발

  • Baek, Joo-Yul (School of Advanced Material Engineering, Yonsei University) ;
  • Park, Seok-Joo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Jong-Won (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Kwang-Bum (School of Advanced Material Engineering, Yonsei University) ;
  • Shin, Dong-Ryul (Fuel Cell Research Center, Korea Institute of Energy Research)
  • 백주열 (연세대학교 신소재공학과) ;
  • 박석주 (한국에너지기술연구원 연료전지연구단) ;
  • 이승복 (한국에너지기술연구원 연료전지연구단) ;
  • 이종원 (한국에너지기술연구원 연료전지연구단) ;
  • 임탁형 (한국에너지기술연구원 연료전지연구단) ;
  • 송락현 (한국에너지기술연구원 연료전지연구단) ;
  • 김광범 (연세대학교 신소재공학과) ;
  • 신동열 (한국에너지기술연구원 연료전지연구단)
  • Received : 2010.09.10
  • Accepted : 2010.10.10
  • Published : 2010.11.30

Abstract

A Crofer 22 APU mesh coated with a conductive ceramic material was developed as an alternative cathode current collector to Ag-based materials for solid oxide fuel cells. $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM) layer was deposited onto the Crofer mesh using a spray-coating technique, in an attempt to mitigate the degradation of electrical properties due to surface oxidation at high temperatures. The oxidation experiments at $800^{\circ}C$ in air indicated that the areaspecific resistance (ASR) of the LSM-coated Crofer mesh was strongly dependent on the wire diameter and the contact morphology between mesh and cell. In addition, the post-heat-treatment in $H_2/N_2$ resulted in a reduced thickness of Cr-containing oxide scales at the interface between Crofer mesh and LSM layer, leading to a decreased ASR.

본 연구에서는 고체산화물 연료전지의 공기극 집전체로 사용되고 있는 고가의 Ag 소재를 대체하고자 전도성 세라믹이 코팅된 mesh 형태의 Crofer 22 APU 집전체를 개발하였다. 고전자전도성의 $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM)을 습식 스프레이법으로 코팅하여 고온 산화 및 전기적 특성의 열화를 억제하고자 하였다. $800^{\circ}C$의 산화 실험 결과에 의하면 LSM이 코팅된 Crofer mesh의 면저항(area-specific resistance)은 mesh의 제작에 사용된 와이어 지름과 접촉 부위의 형상등 실제 접촉점의 수 및 면적을 좌우하는 mesh의 특성에 의해 좌우되었다. 또한 LSM 코팅 후 $H_2/N_2$ 분위기에서의 열처리를 통해 Crofer mesh와 LSM 코팅층 계면에서의 Cr 함유 산화물의 형성을 효과적으로 억제하여 전기적 특성의 열화를 억제할 수 있다.

Keywords

References

  1. S. C. Singhal and K. Kendall, 'High temperature solid oxide fuel cell: fundamentals, design and applications' Elsevier Science (2003).
  2. H. Tu and U. Stimming, 'Advances, aging mechanisms and lifetime in solid-oxide fuel cells' J. Power Sources, 127, 284 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.025
  3. A. Webber and E. I. Tiffee, 'Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications' J. Power Sources, 127, 273 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.024
  4. Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, and J. W. Stevenson, 'Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications' J. Electrochem. Soc., 151, A1825 (2004). https://doi.org/10.1149/1.1797031
  5. M. G. E. Cox, B. McEnaney, and V. D. Scott, 'A chemical diffusion model for partitioning of transition elements in oxide scales on alloys' Philosophical Magazine, 26, 839 (1972). https://doi.org/10.1080/14786437208226960
  6. R. K. Wild, 'High temperature oxidation of austenitic stainless steel in low oxygen pressure' Corrosion Sci., 17, 87 (1977). https://doi.org/10.1016/0010-938X(77)90011-7
  7. X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, and L. C. D. Jonghe, 'Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties' Solid State Ionics, 176, 425 (2005). https://doi.org/10.1016/j.ssi.2004.10.004
  8. N. Sakai, T. Horita, Y. P. Xiong, K. Yamaji, H. Kishimoto, M. E. Brito, H. Yokokawa, and T. Maruyama, 'Structure and transport property of manganese-chromium-iron oxide as a main compound in oxide scales of alloy interconnects for SOFCs' Solid State Ionics, 176, 681 (2005). https://doi.org/10.1016/j.ssi.2004.11.012
  9. H. Jurokawa, K. Kawamura, and T. Maruyama, 'Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient' Solid State Ionics, 168, 13 (2004). https://doi.org/10.1016/j.ssi.2004.02.008
  10. K. Fujita, T. Hashimoto, K. Ogasawara, H. Kameda, Y. Matsuzaki, and T. Sakurai, 'Relationship between electrochemical properties of SOFC cathode and composition of oxide layer formed on metallic interconnects' J. Power Sources, 131, 270 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.050
  11. Z. Yang, G. Xia, and J. W. Stevenson, '$Mn_{1.5}Co_{1.5}O_4 $ spinel protection layers on ferritic stainless steels for SOFC interconnect applications' Electrochem. Solid-State Lett., 8, 168 (2005). https://doi.org/10.1149/1.1854122
  12. Z. Yang, G. Xia, G. D. Maupin, and J. W. Stevenson, 'Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications' Surf. Coat. Tech., 201, 4476 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.082
  13. S. S. Pyo, S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin, S. H. Hyun, and Y. S. Yoo, 'Characteristic of $(La_{0.8}Sr_{0.2})_{0.98}MnO_3$ coating on Crofer22APU used as metallic interconnects for solid oxide fuel cell' Int. J. Hydrogen Energy, in press.
  14. S. P. Jiang, J. G. Love, and L. Apateanu, 'Effect of contact between electrode and current collector on the performance of solid oxide fuel cells' Solid State Ionics, 160, 15 (2003). https://doi.org/10.1016/S0167-2738(03)00127-9
  15. B. P. McCarthy, L. R. Pederson, ,Y. S. Chou, X. D. Zhou, W. A. Surdoval, and L. C. Wilson, 'Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs' J. Power Sources, 180, 294 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.097
  16. J. H. Kim, R. H. Song, and S. H. Hyun, 'Effect of slurrycoated $LaSrMnO_3$ on the electrical property of Fe-Cr alloy for metallic interconnect of SOFC' Solid State Ionics, 174, 185 (2004). https://doi.org/10.1016/j.ssi.2004.07.032
  17. M. G. Fontana, and N. D. Greene, 'Corrosion Engineering' McGraw-Hill (1986).
  18. W. F. Smith, 'Structure and properties of engineering alloys' McGraw-Hill (1993).
  19. J. H. Kuo, H. U. Anderson, and D. M. Sparlin, 'Oxidationreduction behavior of undoped and Sr-doped $LaMnO_3$ nonstoichiometry and defect structure' J. Solid State Chem., 83, 52 (1989). https://doi.org/10.1016/0022-4596(89)90053-4
  20. J. Mizusaki and H. Tagawa, 'Nonstoichiometry and thermochemical stability of the perovskite-type $La_{1-x}Sr_xMnO_{3-{\delta}}$' Solid State Ionics, 49, 111 (1991). https://doi.org/10.1016/0167-2738(91)90076-N