DOI QR코드

DOI QR Code

Cervical design effect of dental implant on stress distribution in crestal cortical bone studied by finite element analysis

유한요소법을 이용한 임플란트 경부 디자인이 골응력에 미치는 영향 분석

  • Kim, Kyung-Tak (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Heon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Cheong-Hee (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 김경탁 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조광헌 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 이청희 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 유원재 (경북대학교 치의학전문대학원 치과교정학교실) ;
  • 이규복 (경북대학교 치의학전문대학원 치과보철학교실)
  • Published : 2009.10.30

Abstract

Statement of problem: High stress concentration on the crestal cortical bone has been regraded as a major etiologic factor jeopardizing long term stability of endosseous implants. Purpose: To investigate if the design characteristics of crestal module, i.e. internal type, external type, and submerged type, affect stress distribution on the crestal cortical bone. Material and methods: A cylindrical shaped implant, 4.3 mm in diameter and 10 mm in length, with 3 different crestal modules, i.e. internal type, external type, and submerged type, were analysed. An axisymmetric scheme was used for finite elment formulation. A vertical load of 50 N and an oblique load of 50N acting at $45^{\circ}$ with the implant's long axis was applied. The peak crestal bone stress acting at the intersection of implant and crestal bone was compared. Results: Under vertical load, the crestal bone stress was high in the order of internal, external, and submerged types. Under the oblique loading condition, it was in the order of internal, submerged, and external types. Conclusion: Crestal module design was found to affect the level of the crestal bone stresses although the actual amount was not significant.

연구목적: 임플란트 경부 디자인의 차이가 경부 치밀골의 응력분포에 미치는 영향을 유한요소법을 이용하여 분석하고자 한다. 연구재료 및 방법: 몸체 형상은 유사 (직경 4.3 mm, 길이 10 mm)하나 경부 디자인이 internal형, external형, 및 submerged형으로 다른 3종의 임플란트 시스템 ((주)덴티스, 대구, 대한민국)에 대하여 축대칭 유한요소모델을 사용하여 해석하였다. 악골 폭경은 7 mm로 동일하게 모델링하였고 하중 조건으로는 임플란트 장축에 평행한 수직하중 50 N, 임플란트 장축에 $45^{\circ}$방향으로 작용하는 경사력 50N을 설정하였다. 결과: 해석한 3종의 임플란트 모두 경부 피질골에 응력집중을 발생시켰으며 디자인 차이에 따른 응력 수준의 차이가 관찰되었다. 경부 피질골의 최대 응력은 수직력 조건에서 internal형, submerged형, external형의 순으로 컸으며, 그 값은 각각 2.71, 2.60, 2.48 MPa였다. 경사력 조건에서는 internal형, external형, submerged형의 순으로 컸으며 그 값은 각각 9.30, 9.14, 8.97 MPa였다. 결론: 임플란트 경부 디자인이 주위 치밀골의 응력 분포에 영향을 미칠 수 있지만 그 차이는 크지 않은 것으로 분석되었다.

Keywords

References

  1. Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 1990;5:31-8
  2. Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992;3:9-16 https://doi.org/10.1034/j.1600-0501.1992.030102.x
  3. Schou S, Holmstrup P, Reibel J, Juhl M, Hj{rting-Hansen E, Kornman KS. Ligature-induced marginal inflammation around osseointegrated implants and ankylosed teeth: stereologic and histologic observations in cynomolgus monkeys (Macaca fascicularis). J Periodontol 1993;64:529-37 https://doi.org/10.1902/jop.1993.64.6.529
  4. Vaillancourt H, Pilliar RM, McCammond D. Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants 1996;11:351-9
  5. Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorp tion, J Korean Acad Implant Dent 2003;22:38-48
  6. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant - a three - dimensional finite element analysis. J Oral Rehabil 2005; 32:279-86 https://doi.org/10.1111/j.1365-2842.2004.01413.x
  7. Adell R, Lekholm U, Rockler B, Br$\aa$nemark PI, Lindhe J, Eriksson B, Sbordone L. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg 1986;15:39-52 https://doi.org/10.1016/S0300-9785(86)80010-2
  8. Jemt T, Lekholm U, Adell R. Osseointegrated implants in the treatment of partially edentulous patients: a preliminary study on 876 consecutively placed fixtures. Int J Oral Maxillofac Implants 1989;4:211-7
  9. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Br$\aa$nemark system. Clin Oral Implants Res 1992;3:104-11 https://doi.org/10.1034/j.1600-0501.1992.030302.x
  10. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Br$\aa$nemark implants affects interfacial bone modeling and remodeling. Int J Oral & Maxillofac Implants 1994;9:345-60
  11. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52 https://doi.org/10.1034/j.1600-0501.1996.070208.x
  12. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 1997;8:1-9 https://doi.org/10.1111/j.1600-0501.1997.tb00001.x
  13. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998; 24:80-8 https://doi.org/10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2
  14. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res 1998;9:407-18 https://doi.org/10.1034/j.1600-0501.1996.090606.x
  15. O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12:648-57 https://doi.org/10.1034/j.1600-0501.2001.120614.x
  16. Kum YJ. Finite Element Analysis of the Influences of the Implant Diameter on the Cortical Bone Stresses. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2004
  17. Lim JY, Lee CH, Jo KH. A Finite Element Stress Analysis of the Bone aroung Implant following the Shape of Root Form Implant. J Korean Acad Implant Dent 2003;22:25-37
  18. Lee JW, Lee CH, Jo KH. Finite element analysis of the stress distribution with load transfer characteristics of the implant/bone interface. J Korean Acad Implant Dent 2003; 22:49-56
  19. Lee SH. Stress analysis with nonlinear modelling of the load transfer characteristics across the osseointegrated interfaces of dental implant. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2002
  20. Cha SB. Finite element approach to investigate the influence of the design configuration of the ITI solid implant on the bone stresses during the osseointegration process. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2005
  21. Chang JM. Finite Element Approach to Investigate the Influence of the Jaw Bone Dimension on the Stresses Around the Root Analogue Dental Implant. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2004
  22. Park DY. Three dimensional Stress Analysis Around Osseointegrated Br$\aa$nemark Implant System Using An Axisymmetric Modelling Approach. MD Thesis, Kyungpook Nat Univ 2001
  23. Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990;16:6-11
  24. Meijer HJ, Kuiper JH, Starmans FJ, Bosman F. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible. J Prosthet Dent 1992;68:96-102 https://doi.org/10.1016/0022-3913(92)90293-J
  25. Duyck J, Naert IE, Van Oosterwyck H, Van der Sloten J, De Cooman M, Lievens S, Puers B. Biomechanics of oral implants: a review of the literature. Technol Health Care 1997;5:253-73
  26. Palmer RM, Smith BJ, Palmer PJ, Floyd PD. A prospective study of Astra single tooth implants. Clin Oral Implants Res 1997;8:173-9 https://doi.org/10.1034/j.1600-0501.1997.080303.x
  27. Nordin T, J$\"{o}$nsson G, Nelvig P, Rasmusson L. The use of a conical fixture design for fixed partial prostheses. A preliminary report. Clin Oral Implants Res 1998;9:343-7 https://doi.org/10.1034/j.1600-0501.1998.090508.x
  28. Norton MR. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro - and microstructure. Clin Oral Implants Res 1998;9:91-9 https://doi.org/10.1034/j.1600-0501.1998.090204.x
  29. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74 https://doi.org/10.1046/j.1365-2842.2002.00891.x
  30. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68
  31. Lekholm U, Zarb GA. Patient selection and preparation. In: Br$\aa$nemark PI, Zarb GA, Albrektsson T, eds. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985, 199-209
  32. Asaoka K, Kuwayama N, Okuno O, Miura I. Mechanical properties and biomechanical compatibility of porous titanium for dental implants. J Biomed Mater Res 1985;19:699-713 https://doi.org/10.1002/jbm.820190609
  33. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76:633-40 https://doi.org/10.1016/S0022-3913(96)90442-4
  34. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108
  35. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95
  36. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec 2003;275A:1081-101 https://doi.org/10.1002/ar.a.10119
  37. Meyer U, Joos U, Mythili J, Stamm, T, Hohoff A, Stratmann U, Wiesmann HP. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biometerials 2004;25:1959-67 https://doi.org/10.1016/j.biomaterials.2003.08.070
  38. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58 https://doi.org/10.1016/S0021-9290(03)00164-7
  39. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Impl Res 1996;7:143-52 https://doi.org/10.1034/j.1600-0501.1996.070208.x

Cited by

  1. Finite element analysis on the connection types of abutment and fixture vol.50, pp.2, 2012, https://doi.org/10.4047/jkap.2012.50.2.119