DOI QR코드

DOI QR Code

The effect of Ca-P coatings of anodized implant surface on response of osteoblast-like cells in vitro

임플란트 표면의 Ca-P 코팅 방법이 MG63 골모유사세포 반응에 미치는 영향에 대한 in vitro 연구

  • Kim, Il-Yeon (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Institute for Clinical Dental Research (ICDR), Korea University) ;
  • Jung, Sung-Min (Well Dental Clinic) ;
  • Hwang, Soon-Jung (School of Dentistry, Seoul National University) ;
  • Shin, Sang-Wan (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Institute for Clinical Dental Research (ICDR), Korea University)
  • 김일연 (고려대학교 임상치의학대학원 고급치과보철학과, 임상치의학연구소) ;
  • 정성민 (웰치과) ;
  • 황순정 (서울대학교 치의학대학원 구강악안면외과) ;
  • 신상완 (고려대학교 임상치의학대학원 고급치과보철학과, 임상치의학연구소)
  • Published : 2009.10.30

Abstract

Purpose: The purpose of this study was to evaluate the response of osteoblast-like cells to Ca-P coated surface obtained via Ion beam-assisted deposition (IBAD) method and Sol-Gel process on anodized surface by cellular proliferation and differentiation. Material and methods: The surface of a commercially pure titanium (Grade IV) discs with dimension of 10mm diameter and 2 mm thickness was modified by anodic oxidation under a constant voltage of 300 V. The experimental groups were coated with Ca-P by the IBAD method and Sol-Gel process on anodized surface. The surface roughness (Ra) of specimens was measured by optical interferometer and each surface was examined by SEM. To evaluate cell response, MG63 cells were cultured and cell proliferation, ALP activity and the ability of cell differentiation were examined. Also, cell morphology was examined by SEM. The significant of each group was verified by Kruskal-Wallis Test ($\alpha$=.05). Results: The Ra value of Ca-P coated surface by IBAD method was significantly higher than Ca-P coated surface by Sol-gel process (P < .05). The level of cell proliferation and ALP activity was higher in Ca-P coated surface by IBAD method (P<.05). The expression of ALP showed higher level expression in Ca-P coated surface by IBAD method. Cells grown on Ca-P coated surface by IBAD method were uniformly distributed and developed a very close layer. Conclusion: These experiments showed better performances of Ca-P coated surface by IBAD method with respect to Ca-P coated surface by Sol-gel process. Ca-P coated surface by IBAD method appear to give rise more mature osteoblast characteristics and might result in increased bone growth and bone-implant contact.

연구목적: 본 연구에서는 양극산화 임플란트 표면에 서로 다른 두 가지 방법, Ion beam-assisted deposition (IBAD)법과 Sol-gel법으로 Ca-P 코팅한 임플란트 시편에 골모세포를 배양하였을 때 세포의 증식, 분화, 형태에 어떠한 영향을 미치는지 조사하고자 한다. 연구재료 및 방법: 지름 10 mm, 두께 2 mm 인 상업용 순수 titanium grade IV 재질의 디스크를 제작하였고, 모든 시편은 acetone, 70% ethanol, 증류수에서 각각 10분씩 세척 후 건조하였다. 모든 표면은 300 V의 constant voltage하에서 양극 산화 (anodized)시킨다. 실험군은 양극산화 임플란트 표면에 각각 IBAD법과 Solgel법으로 Ca-P 코팅하였다. 각 표면의 미세표면 거칠기(Ra)를 측정하였고, SEM을 통해 표면의 형상을 관찰하였다. 골모세포을 배양한 후 각 표면군의 세포 증식, ALP 활성도 및 RT-PCR를 통한 골세포 분화 능력 검증을 하였으며, SEM을 통해 세포의 형상도 확인하였다. 통계분석은 SPSS (version 12.0) 프로그램을 이용하여 Kruskal-Wallis Test로 각 군의 유의성을 검증하였다 ($\alpha$=0.05). 결과: IBAD법으로 Ca-P 코팅한 표면이 Sol-gel법으로 Ca-P 코팅한 표면보다 표면 거칠기 (Ra) 값이 더 크게 나타났다 (P<.05). IBAD법으로 Ca-P 코팅한 표면이 Sol-gel법으로 Ca-P 코팅한 표면 보다 세포 증식이 더 활발하고 골세포 조기 분화 정도를 확인 할 수 있는ALP 활성도 또한 더 높게 나타났다 (P<.05). SEM 관찰 결과IBAD법으로 Ca-P 코팅한 표면에 골모세포들이 친화성을 띄면서 안정적으로 부착되었다. 결론: IBAD법으로 Ca-P 코팅한 표면이 Sol-gel법으로 Ca-P 코팅한 표면보다 더 우수한 세포 반응을 보였다. IBAD법으로 Ca-P 코팅한 표면의 세포들은 증식이 잘 이루어지고 잘 분화된 골모세포 형상을 보이고 ALP 활성도 또한 높아 골 형성을 증가시켜 높은 골-임플란트 접촉을 보일 것이다.

Keywords

References

  1. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  2. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536-543
  3. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29:1567-1575 https://doi.org/10.1002/jbm.820291213
  4. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2-review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544-64
  5. Osborn JF, Newesly H. Dynamic aspects of the implantbone-interface. In:Heimke G (ed). Dental Implants. Materials and Systems. Munich: Hanser 1980:111-23
  6. Hench LL. Bioceramics: material characteristics versus in vivo behavior. Ann N Y Acad Sci 1988;523:54-71 https://doi.org/10.1111/j.1749-6632.1988.tb38500.x
  7. Kim HM, Takadama H, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Formation of bioactive functionally graded structure on Ti-6Al-4V alloy by chemical surface treatment. J Mater Sci Mater Med 2000;11:555-9 https://doi.org/10.1023/A:1008924102096
  8. Caulier H, van der Waerden JP, Paquay YC, Wolke JG, Kalk W, Naert I, Jansen JA. Effect of calcium phosphate (Ca-P) coatings on trabecular bone response: a histological study. J Biomed Mater Res 1995;29:1061-9 https://doi.org/10.1002/jbm.820290906
  9. Caulier H, Vercaigne S, Naert I, van der Waerden JP, Wolke JG, Kalk W, Jansen JA. The effect of Ca-P plasmasprayed coatings on the initial bone healing of oral implants: an experimental study in the goat. J Biomed Mater Res 1997;34:121-8 https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<121::AID-JBM16>3.0.CO;2-N
  10. Caulier H, van der Waerden JP, Wolke JG, Kalk W, Naert I, Jansen JA. A histological and histomorphometrical evaluation of the application of screw-designed calciumphosphate (Ca-P)-coated implants in the cancellous maxillary bone of the goat. J Biomed Mater Res 1997;35:19-30 https://doi.org/10.1002/(SICI)1097-4636(199704)35:1<19::AID-JBM3>3.0.CO;2-P
  11. Caulier H, Hayakawa T, Naert I, Van Der Waerden JP, Wolke JG, Jansen JA. An animal study on the bone behaviour of Ca-P-coated implants: influence of implant location. J Mater Sci Mater Med 1997;8:531-6 https://doi.org/10.1023/A:1018542630017
  12. Cook SD, Thomas KA, Dalton JE, Volkman TK, Whitecloud TS 3rd, Kay JF. Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength. J Biomed Mater Res 1992;26:989-1001 https://doi.org/10.1002/jbm.820260803
  13. Tong W, Yang Z, Zhang X, Yang A, Feng J, Cao Y, Chen J. Studies on diffusion maximum in x-ray diffraction patterns of plasma-sprayed hydroxyapatite coatings. J Biomed Mater Res 1998;40:407-13 https://doi.org/10.1002/(SICI)1097-4636(19980605)40:3<407::AID-JBM10>3.0.CO;2-G
  14. Garc$\'{i}$a F, Arias JL, Mayor B, Pou J, Rehman I, Knowles J, Best S, Le$\'{o}$n B, P$\'{e}$rez-Amor M, Bonfield W. Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings. J Biomed Mater Res 1998;43:69-76 https://doi.org/10.1002/(SICI)1097-4636(199821)43:1<69::AID-JBM8>3.0.CO;2-K
  15. Choi JM, Kim HE, Lee IS. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 2000;21:469-73 https://doi.org/10.1016/S0142-9612(99)00186-6
  16. Li P, de Groot K. Better bioactive ceramics through sol-gel process. J Sol-Gel Sci Technol 1994;2:797-801 https://doi.org/10.1007/BF00486353
  17. Hamad K, Kon M, Hanawa T, Yokoyama K, Miyamoto Y, Asaoka K. Hydrothermal modification of titanium surface in calcium solutions. Biomaterials 2002;23:2265-72 https://doi.org/10.1016/S0142-9612(01)00361-1
  18. Ma J, Wang C, Peng KW. Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials 2003;24:3505-10 https://doi.org/10.1016/S0142-9612(03)00203-5
  19. Milella E, Cosentino F, Licciulli A, Massaro C. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 2001;22:1425-31 https://doi.org/10.1016/S0142-9612(00)00300-8
  20. Kasemo B, Lausmaa J. Aspect of surface physics on titanium implants. Swed Dent J 1985;28:19-36
  21. Hulbert SC. Bioactive ceramic-bone interface. In: Yamamuro T, Hench L, Wilson J (eds). Handbook of Bioactive Ceramics. Vol I. Boca Raton. FL:CRC 1990; 32:409-17
  22. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002;395:81-98 https://doi.org/10.1097/00003086-200202000-00009
  23. Jung YC, Han CH, Lee IS, Kim HE. Effects of ion beamassisted deposition of hydroxyapatite on the osseointegration of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 2001;16:809-18
  24. Park YS, Yi KY, Lee IS, Han CH, Jung YC. The effects of ion beam-assisted deposition of hydroxyapatite on the gritblasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 2005;20:31-8
  25. Haddow DB, Kothari S, James PF, Short RD, Hatton PV, van Noort R. Synthetic implant surfaces. 1. The formation and characterization of sol-gel titania films. Biomaterials 1996;17:501-7 https://doi.org/10.1016/0142-9612(96)82724-4
  26. Milella E, Cosentino F, Licciulli A, Massaro C. Preparation and characterization of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 2001;22:1425-31 https://doi.org/10.1016/S0142-9612(00)00300-8
  27. Ramires PA, Wennerberg A, Johansson CB, Cosentino F, Tundo S, Milella E. Biological behavior of sol-gel coated dental implants. J Mater Sci Mater Med 2003;14:539-45 https://doi.org/10.1023/A:1023412131314
  28. Listgarten MA, Buser D, Steinemann SG, Donath K, Lang NP, Weber HP. Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva. J Dent Res 1992;71:364-71 https://doi.org/10.1177/00220345920710020401
  29. Rodriguez R, Kim K, Ong JL. In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J Biomed Mater Res A 2003;65:352-8 https://doi.org/10.1002/jbm.a.10490
  30. Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 2001;23:329-46 https://doi.org/10.1016/S1350-4533(01)00050-9
  31. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491-501 https://doi.org/10.1016/S0142-9612(01)00131-4