DOI QR코드

DOI QR Code

Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant

임플란트 경부형상이 주위골 응력에 미치는 영향에 관한 유한요소법적 분석

  • Chung, Jae-Min (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Heon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Cheong-Hee (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 정재민 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조광헌 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 이청희 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 유원재 (경북대학교 치의학전문대학원 치과교정학교실) ;
  • 이규복 (경북대학교 치의학전문대학원 치과보철학교실)
  • Published : 2009.10.30

Abstract

Statement of problem: Crestal bone loss, a common problem associated with dental implant, has been attributed to excessive bone stresses. Design of implant's transgingival (TG) part may affect the crestal bone stresses. Purpose: To investigate if concavely designed geometry at a dental implant's TG part reduces peri-implant bone stresses. Material and methods: A total of five differently configured TG parts were compared. Base model was the ITI one piece implant (Straumann, Waldenburg, Switzerland) characterized by straight TG part. Other 4 experimental models, i.e. Model-1 to Model-4, were designed to have concave TG part. Finite element analyses were carried out using an axisymmetric assumption. A vertical load of 50 N or an oblique load of 50 N acting at $30^{\circ}$ with the implant's long axis was applied. For a systematic stress comparison, a total of 19 reference points were defined on nodal points around the implant. The peak crestal bone stress acting at the intersection of implant and crestal bone was estimated using regression analysis from the stress results obtained at 5 reference points defined along the mid plane of the crestal bone. Results: Base Model with straight configuration at the transgingival part created highest stresses on the crestal bone. Stress level was reduced when concavity was imposed. The greater the concavity and the closer the concavity to the crestal bone level, the less the crestal stresses. Conclusion: The transgingival part of dental implant affect the crestal bone stress. And that concavely designed one may be used to reduce bone stress.

연구목적: 임플란트 경부의 치은관통부 형상이 주위골 응력분포에 미치는 영향에 대해 조사하고자 한다. 연구재료 및 방법: 높이 2.8 mm, 상부 직경 4 mm, 하부 직경 2.7 mm 인 직선형 치은관통부를 가지는 ITI의 일체형(one piece) 임플란트 (Straumann, Waldenburg, Switzerland)를 Base Model로 사용하여, 치은관통부 외형에 함몰부를 부여하여 곡선형으로 수정한 4개의 해석 모델 (Model-1, -2, -3, -4)을 설정하였다. Base Model을 포함, 모두 5개의 경우에 대해 축대칭 유한요소모델링을 통해 임플란트 장축에 평행인 수직 방향과 임플란트 장축에 $30^{\circ}$ 경사진 방향으로 각각 50 N의 힘이 작용할 때 발생되는 임플란트 주위골의 응력을 해석하여 비교하였다. 체계적인 응력비교를 위해 임플란트 주위에 19개의 절점을 응력 관찰점으로 선정하였으며, 경부 치밀골에 설정된 5개 관찰점의 응력으로부터 회귀분석법으로 임플란트/골 사이에서 생기는 최대응력값을 추정하여 정량적인 비교를 실행하였다. 결과: 최대 골응력은 치은관통부가 직선인 기본모델에서 가장 컸으며, 치은 관통부를 곡선으로 설계한 경우 응력이 감소되었다. 치은 함몰부가 클수록 응력감소 정도가 커졌으며 함몰부의 수직위치가 몸체부에 가장 가까운 Model-4에서 응력감소 정도가 전체의 약5%로 가장 컸다. 결론: 임플란트의 경부 형상은 골응력에 영향을 미치며, 이를 곡선형으로 함으로써 또한 그 함몰부를 몸체부에 근접하게 함으로써 경부골 응력감소를 효과적으로 도모할 수 있다.

Keywords

References

  1. Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofacial Surg 1984;42:705-11 https://doi.org/10.1016/0278-2391(84)90417-8
  2. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721-64 https://doi.org/10.1046/j.0909-8836..t01-6-.x
  3. Covani U, Bortolaia C, Barone A, Sbordone L. Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol 2004;75:1605-12 https://doi.org/10.1902/jop.2004.75.12.1605
  4. Weinberg LA, Kruger B. Biomechanical considerations when combining tooth-supported prostheses. Oral Surg Oral Med Oral Pathol 1994:78:22-7 https://doi.org/10.1016/0030-4220(94)90112-0
  5. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14:108-16 https://doi.org/10.1097/01.id.0000165033.34294.db
  6. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res 2003;82:232-7 https://doi.org/10.1177/154405910308200316
  7. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24 https://doi.org/10.1902/jop.2000.71.9.1412
  8. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52 https://doi.org/10.1902/jop.2003.74.3.346
  9. Sanavi F, Weisgold AS, Rose LF. Biologic width and its relation to periodontal biotypes. J Esthet Dent 1998;10:157-63 https://doi.org/10.1111/j.1708-8240.1998.tb00351.x
  10. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-9 https://doi.org/10.1902/jop.2000.71.4.546
  11. Hartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol 2004;75:572-7 https://doi.org/10.1902/jop.2004.75.4.572
  12. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002; 73:322-33 https://doi.org/10.1902/jop.2002.73.3.322
  13. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung, JP, Rhyu IC, Choi YC, Baik HK, Ku H, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74 https://doi.org/10.1046/j.1365-2842.2002.00891.x
  14. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 2004;92:523-30 https://doi.org/10.1016/j.prosdent.2004.07.024
  15. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-11
  16. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 2005;24:219-24 https://doi.org/10.4012/dmj.24.219
  17. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94 https://doi.org/10.1111/j.1600-0501.2005.01132.x
  18. Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implantsupported crown. J Prosthet Dent 2005;93:227-34 https://doi.org/10.1016/j.prosdent.2004.12.019
  19. Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998;25:847-58 https://doi.org/10.1046/j.1365-2842.1998.00318.x
  20. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant-a three-dimensional finite element analysis. J Oral Rehabil 2005;32:279-86 https://doi.org/10.1111/j.1365-2842.2004.01413.x
  21. Natali AN, Pavan PG, Ruggero AL. Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res 2006;17:67-74 https://doi.org/10.1111/j.1600-0501.2005.01162.x
  22. Frost HM. A 2003 update of bone physiology and Wolff''s Law for clinicians. Angle Orthod 2004;74:3-15
  23. Melsen B. Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 1999;69:151-8
  24. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants 1991;6:391-8
  25. Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8 https://doi.org/10.1111/j.1532-849X.1992.tb00422.x
  26. Meijer HJ, Starmans FJ, Steen WH, Bosman F. Location of implants in the interforaminal region of the mandible and the consequences for the design of the superstructure. J Oral Rehabil 1994;21:47-56 https://doi.org/10.1111/j.1365-2842.1994.tb01123.x
  27. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Bra?.���.nemark fixtures affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants 1994; 9:345-60
  28. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 1997;8:1-9 https://doi.org/10.1111/j.1600-0501.1997.tb00001.x
  29. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Br$\aa$nemark system. Clin Oral Implants Res 1992;3:104-11 https://doi.org/10.1034/j.1600-0501.1992.030302.x
  30. Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorption. J Korean Acad Implant Dent 2003;22:38-47
  31. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a threedimensional finite element analysis. Clin Oral Implants Res 2004;15:401-12 https://doi.org/10.1111/j.1600-0501.2004.01022.x
  32. Callan DP, Hahn J, Hogan B, Jenkins G, Krauser JT. Implant failure. Implant Dent 2002;11:109-17 https://doi.org/10.1097/00008505-200204000-00007
  33. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68
  34. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58 https://doi.org/10.1016/S0021-9290(03)00164-7
  35. O'Brien, GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7 https://doi.org/10.1563/0.699.1
  36. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clinl Oral Implants Res 2001;12:196-201 https://doi.org/10.1034/j.1600-0501.2001.012003196.x
  37. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95
  38. NISA II / DISPLAY III User’'s Manuel, Engineering Mechanics Research Corporation (EMRC)
  39. Borchers L. Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res 1983:62:155-9 https://doi.org/10.1177/00220345830620021401
  40. Collings EW. The physical metallurgy of titanium alloys. Metals Park (OH): Americal society of metals. 1984
  41. Craig RG. Restorative dental materials. 8th ed. St. Louis (MO):Mosby:1989. p84
  42. Nicolella DP, Lankford J, Jepsen KJ, Davy DT. Correlation of physical damage development with microstructure and strain localization in bone. Am Soc Mechanical Engineers 1997;35:311-2
  43. Koh CS, Lee MS, Choi KW. Improved stress analyses of dental systems implant by homogenization technique. J Korean Acad Periodontol 1997;27:263-90
  44. Lavernia CJ, Cook SD, Weinstein AM, Klawitter JJ. An analysis of stresses in a dental implant system. J Biomech 1981;14:555-60 https://doi.org/10.1016/0021-9290(81)90005-1
  45. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108
  46. Anderson DJ. Measurement of stress in mastication. I. J Dent Res 1956;35:664-70 https://doi.org/10.1016/j.jdent.2007.05.002
  47. Anderson DJ. Measurement of stress in mastication. II. J Dent Res 1956;35:671-3 https://doi.org/10.1177/00220345560350050301
  48. Hanses G, Smedberg JI, Nilner K. Analysis of a device for assessment of abutment and prosthesis screw loosening in oral implants. Clin Oral Implants Res 2002;13:666-70 https://doi.org/10.1034/j.1600-0501.2002.130614.x
  49. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Perio Rest Dent 1993;13:409-31
  50. Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res 2000;11:458-64 https://doi.org/10.1034/j.1600-0501.2000.011005458.x
  51. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26
  52. Degidi M, Piattelli A. 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Implantol 2005;31:25-31 https://doi.org/10.1563/0-730.1

Cited by

  1. Influence of microthread design on marginal cortical bone strain developement: A finite element analysis vol.48, pp.3, 2010, https://doi.org/10.4047/jkap.2010.48.3.215
  2. Study of a "wing-type" implant on stress distribution and bone resorption at the alveolar crest vol.38, pp.6, 2012, https://doi.org/10.5125/jkaoms.2012.38.6.337
  3. FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants vol.38, pp.1, 2016, https://doi.org/10.1186/s40902-016-0054-4
  4. 임플란트 경부 디자인이 변연골 응력에 미치는 영향 vol.48, pp.3, 2009, https://doi.org/10.4047/jkap.2010.48.3.224
  5. 임플란트 경부의 역사면 디자인이 변연골 응력분포에 미치는 영향 vol.48, pp.4, 2009, https://doi.org/10.4047/jkap.2010.48.4.266