DOI QR코드

DOI QR Code

Fracture load and marginal fitness of zirconia ceramic coping by design and coloration

유색 및 백색 지르코니아 세라믹 코핑의 코핑 디자인에 따른 파절 하중과 변연 적합성

  • Shin, Mee-Ran (Department of Prosthodontics, Graduate School of Clinical Dentistry, College of Medicine, Hallym University) ;
  • Kim, Min-Jeong (Department of Dentistry, Graduate School, Wonkwang University) ;
  • Oh, Sang-Chun (Department of Dentistry, Graduate School, Wonkwang University)
  • 신미란 (한림대학교 의과대학 임상치의학대학원 치과보철과) ;
  • 김민정 (원광대학교 치과대학 치과보철학교실) ;
  • 오상천 (원광대학교 치과대학 치과보철학교실)
  • Published : 2009.10.30

Abstract

Purpose: The purpose of this study was to compare the marginal fitness and fracture load of the zirconia copings according to the design with different thickness and coloration. Material and methods: The evaluation was based on 80 zirconia copings. Zirconia copings were fabricated in design with different thicknesses using CAD/CAM system (Everset, KAVO dental GmbH, Biberach, Germany). The designs of copings were divided into four groups. The first group consisted of copings with uniform thickness of 0.3 mm. The thickness in the second group was 0.3 mm on the buccal surface and 0.6 mm on the lingual surface. The third group consisted of coping with uniform thickness of 0.6 mm. The thickness in the fourth group was 0.6 mm on the buccal surface and 1mm on the lingual surface. Each group consisted of 10 colored and 10 uncolored copings. Half of the copings (40) processed with a milling system according to the specific design were sent to be given a color (A3) through saturation in special dye by a manufacturing company. Just after sintering, the marginal discrepancies of copings were measured on the buccal, lingual, mesial and distal surfaces of metal die, under a Video Microscope System (sv-35, Sometech, Seoul, Korea) at a magnification of $\times$ 100. It was remeasured after the adjusting of the inner surface. Next, all copings were luted to the metal dies using reinforced cement {GC FujiCEM (GC Corp. Tokyo, Japan)} and mounted on the testing jig in a Universal Testing Machine (Instron 4467, Norwood, MA, USA). The results were analyzed statistically using the one-way ANOVA test. Results: The obtained results were as follow: 1. The measured value of marginal discrepancy right after sintering was the greatest in the contraction of the buccal area in all groups, except for group I2. 2. There was no significant difference of marginal fitness among the groups in the colored zirconia group (P<.05). 3. When the marginal fitness among the groups in the uncolored zirconia group was considered, group II2 had the smallest marginal discrepancy. 4. When the colored and uncolored groups with the same design were compared, there was a significant difference between I1 and II1 groups. In group 2, 3, and 4, the uncolored zirconia had the greatest marginal fitness (P<.05). 5. After adjustment of inner surface, there was no significant difference in the marginal fitness in all groups when color and design of the zirconia coping were compared. 6. The fracture load of CAD/CAM zirconia copings showed significant difference in group 1, 2, 3, and 4. I4 and II4 had the strongest fracture load. 7. When groups with different color and same design were compared, all colored groups showed greater fracture load (P>.05), with no significance. Conclusion: There was difference in the marginal fitness according to the design and coloration of zirconia copings right after sintering, but it was decided that the copings may well be used clinically if the inner surface are adjusted. The copings should be thick enough for the reinforcement of fracture strength. But considering the esthetics of the visible surfaces (labial and buccal surface), the thickness of copings may be a little thin, without giving any significant effect on the fracture strength. This type of design may be considered when giving priority to preservation of tooth or esthetics.

연구목적: 본 연구는 유색 및 백색 지르코니아 세라믹으로 제작된 코핑의 디자인에 따른 지르코니아 세라믹 코핑의 파절 하중과 변연 적합성을 평가한 것으로 그 결과를 임상에 응용하는데 도움을 주고자 하였다. 연구재료 및 방법: CAD/CAM system (Everset, KAVO Dental GmbH, Biberach, Germany)을 이용하여, 80개의 상악 제1 소구치 세라믹 코핑을 제작하되, 1그룹은 전체적으로 균일하게 0.3 mm로, 2그룹은 협면 0.3 mm 설면 0.6 mm, 3그룹은 전체 0.6 mm 균일하게, 4그룹은 협면 0.6 mm 설면 1.0 mm로 디자인하고, 유색 (I) 및 백색 (II) 지르코니아 코핑을 각 그룹당 10개가 되게 하였다. 소성직후와 조정 후 코핑의 변연 적합성을 Video Microscope System (sv-35, Sometech, Seoul, Korea)를 이용하여 100배율로 관찰하였고, 금속 주 모형에 코핑을 강화형 글래스아이오노머 시멘트로 합착 후 Universal Testing Machine (Instron 4467, Norwood, MA, USA)을 이용하여 파절 하중을 측정하여, one-way ANOVA test 를 시행하여 결과를 분석하였다. 결과: 1. CAD/CAM 지르코니아 코핑의 파절 하중은 1그룹, 2와 3그룹, 그리고 4그룹간에 유의성있는 차이를 보였으며 I4, II4의 파절 하중값이 가장 컸다. 2. 코핑의 디자인이 같고 색이 다른 그룹간의 비교에서는 전 그룹 모두 파절 하중값의 유의성은 없었다. 3. 소성 직후 변연 오차 측정값은 I2그룹을 제외한 전 그룹에서 협측 측정점에서 변연오차가 가장 큰 경향을 보였다. 4. 소성 직후 변연 오차 측정값은 I 그룹 지르코니아 그룹에서 그룹별 전체적인 변연적합도를 보았을 때 그룹간에 유의한 차이는 없었다 (P>.05). 5. 소성직후 변연 오차 측정값은 백색 지르코니아 그룹에서 그룹별 전체적인 변연 적합도를 보았을때 II1그룹의 변연 오차가 가장 컸다 (P<.05). 6. 소성직후 변연오차 측정값은 디자인이 같은 그룹의 유색, 백색 비교에서, I1와 II1그룹을 제외한 나머지 그룹에서 백색 지르코니아의 변연 적합도가 더 좋았다 (P<.05). 7. 내면 조정 후에는 색상화 및 지르코니아 코어 디자인에 따른 전 그룹간 변연 적합도의 차이는 없었다 (P>.05). 결론: 지르코니아 코핑 디자인과 색상화에 따른 변연 적합성은 소성 직후에는 다소 차이가 있었으나 내면 조정을 하면 임상 사용에는 무리가 없을 것으로 판단되었고, 파절강도 강화를 위해 코핑의 두께는 가급적 두꺼워야 하나, 가시면 (순면, 협면)의 심미성(반투명성)을 고려할 경우 가시면을 0.3 mm로 얇게 해도 파절 강도에 큰 영향을 주지 않는 것으로 사료되었다.

Keywords

References

  1. Shin ES, Lee YS, Park WH. Comparative study in fracture strength of zirconia cores fabricated with three different CAD/CAM systems. J Korean Acad Prosthodont 2008;46:22-30
  2. Jeong HC. Fracture strength of zirconia monolithic crowns. J Korean Acad Prosthodont 2006;44:157-64
  3. Giordano R. All-ceramic restorative systems: aluminabased core systems. J Mass Dent Soc 2002;51:30-35
  4. White SN, Caputo AA, Li ZC, Zhao XY. Modulus of rupture of the Procera All-Ceramic System. J Esthet Dent 1996;8:120-6 https://doi.org/10.1111/j.1708-8240.1996.tb01005.x
  5. Wagner WC, Chu TM. Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics. J Prosthet Dent 1996;76:140-4 https://doi.org/10.1016/S0022-3913(96)90297-8
  6. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8 https://doi.org/10.1177/00220345950740060301
  7. Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003;82:238-42 https://doi.org/10.1177/154405910308200317
  8. Kupiec KA, Wuertz KM, Barkmeier WW, Wilwerding TM. Evaluation of porcelain surface treatments and agents for composite-to-porcelain repair. J Prosthet Dent 1996;76:119-24 https://doi.org/10.1016/S0022-3913(96)90294-2
  9. May KB, Russell MM, Razzoog ME, Lang BR. Precision of fit: the Procera AllCeram crown. J Prosthet Dent 1998;80:394-404 https://doi.org/10.1016/S0022-3913(98)70002-2
  10. Kim DK, Cho IH, Lim JH, Lim HS. On the Marginal fidelity of All-ceramic core using CAD/CAM system. J Korean Acad Prosthodont 2003;41:20-34
  11. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74
  12. Valderrama S, Van Roekel N, Andersson M, Goodacre CJ, Munoz CA. A comparison of the marginal and internal adaptation of titanium and gold-platinum-palladium metal ceramic crowns. Int J Prosthodont 1995;8:29-37
  13. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32 https://doi.org/10.1016/S0022-3913(96)90413-8
  14. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002;88:4-9 https://doi.org/10.1067/mpr.2002.126794
  15. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-5 https://doi.org/10.1067/mpr.2002.126795
  16. Antonson SA, Anusavice KJ. Contrast ratio of veneering and core ceramics as a function of thickness. Int J Prosthodont 2001;14:316-20
  17. Johnston WM, Ma T, Kienle BH. Translucency parameter of colorants for maxillofacial prostheses. Int J Prosthodont 1995;8:79-86
  18. Zhang Y, Griggs JA, Benham AW. Influence of powder/liquid mixing ratio on porosity and translucency of dental porcelains. J Prosthet Dent 2004;91:128-35 https://doi.org/10.1016/j.prosdent.2003.10.014
  19. Devigus A, Lombardi G. Shading Vita YZ substructures: influence on value and chroma, part I. Int J Comput Dent 2004;7:293-301
  20. Devigus A, Lombardi G. Shading Vita In-ceram YZ substructures: influence on value and chroma, part II. Int J Comput Dent 2004;7:379-88
  21. Koutayas SO, Kakaboura A, Hussein A, Strub JR. Colorimetric evaluation of the influence of five different restorative materials on the color of veneered densely sintered alumina. J Esthet Restor Dent 2003;15:353-60; discussion 361 https://doi.org/10.1111/j.1708-8240.2003.tb00308.x
  22. Beuer F, Erdelt KJ, Schweiger J, Eichberger M, and Gernet W. Flexural strength and coloured and aged zirconia. 2004 IADR: abstract no 0113
  23. OH SC, Lee HH, Shin MR, Park KS. Translucency and Color Stability of various core Ceramics for All-Ceramic Restoration. J Korean Acad Stomato Func Occ 2007;23:156-70
  24. Koo JY, Lim JH, Cho IH. Marginal fidelity according to the margin types of all ceramic crowns. J Korean Acad Prosthodont 1997;35:445-57
  25. Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24 https://doi.org/10.1016/0022-3913(90)90147-5
  26. Kay GW, Jablonski DA, Dogon IL. Factors affecting the seating and fit of complete crowns: a computer simulation study. J Prosthet Dent 1986;55:13-8 https://doi.org/10.1016/0022-3913(86)90062-4
  27. Kim IS, Kang DW. Marginal adaptation of the conical inner crown fabrication with CAD/CAM. J Korean Acad Prosthodont 2002;40:30-41
  28. Boening KW, Wolf BH, Schmidt AE, K$\"{a}$stner K, Walter MH. Clinical fit of Procera AllCeram crowns. J Prosthet Dent 2000;84:419-24 https://doi.org/10.1067/mpr.2000.109125
  29. Wang CJ, Millstein PL, Nathanson D. Effects of cement, cement space, marginal design, seating aid materials, and seating force on crown cementation. J Prosthet Dent 1992;67:786-90 https://doi.org/10.1016/0022-3913(92)90583-V
  30. Oh SC, Lee HH, Lee IK, Shin MR. Flexure strength of various colored and uncolored zirconia ceramics for all- ceramic restoration. J Korean Acad Stomato Func Occ 2007;23:119-30
  31. Beuer F, Erdelt KJ, Schweiger J, Eichberger M, Gernet W. Flexural strength and coloured and aged zirconia. 2004; IADR:abstract no 1775
  32. Huang H, Zhang FQ, Sun J, Gao L. Effect of three kinds of rare earth oxides on chromaticity and mechanical proper ties of zirconia ceramic. Zhonghua Kou Qiang Yi Xue Za Zhi 2006;41:327-30
  33. Hwang JW, Yang JH. A study on the fracture strength of conventional and copy-milled In-ceram crown. J Korean Acad Prosthodont 1997;35:417-29
  34. Seghi RR, Daher T, Caputo A. Relative flexural strength of dental restorative ceramics. Dent Mater 1990;6:181-4 https://doi.org/10.1016/0109-5641(90)90026-B
  35. Lee SK, Wilson PR. Fracture strength of all-ceramic crowns with varying core elastic moduli. Aust Dent J 2000;45:103-7
  36. Seo JY, Park IN, Lee KW. Fracture strength between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system. J Korean Acad Prosthodont 2006;44:29-39

Cited by

  1. Comparative study of fracture strength depending on the occlusal thickness of full zirconia crown vol.51, pp.3, 2013, https://doi.org/10.4047/jkap.2013.51.3.160
  2. 코핑 디자인과 시멘트에 따른 지르코니아 도재관의 파절 저항성 vol.48, pp.3, 2010, https://doi.org/10.4047/jkap.2010.48.3.194