DOI QR코드

DOI QR Code

Interferon Tau in the Ovine Uterus

  • Song, Gwon-Hwa (WCU Biomodulation Major, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Han, Jae-Yong (WCU Biomodulation Major, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Spencer, Thomas E. (Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University) ;
  • Bazer, Fuller W. (WCU Biomodulation Major, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2009.09.02
  • Accepted : 2009.10.06
  • Published : 2009.12.01

Abstract

The peri-implantation period in mammals is critical with respect to survival of the conceptus (embryo/fetus and associated extraembryonic membranes) and establishment of pregnancy. During this period of pregnancy, reciprocal communication between ovary, conceptus, and endometrium is required for successful implantation and placentation. At this time, interferon tau (IFNT) is synthesized and secreted by the mononuclear trophectodermal cells of the conceptus between days 10 and 21~25. The actions of IFNT to signal pregnancy recognition and induce or increase expression of IFNT-stimulated genes (ISGs), such as ISG15 and OAS, are mediated by the Type I IFN signal transduction pathway. This article reviews the history, signaling pathways of IFNT and the uterine expression of several IFNT-stimulated genes during the peri-implantation period. Collectively, these newly identified genes are believed to be critical to unraveling the mechanism(s) of reciprocal fetal-maternal interactions required for successful implantation and pregnancy.

Keywords

References

  1. Spencer, T. E. and Bazer, F. W. 2002. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front Biosci 7:d1879-98. https://doi.org/10.2741/spencer
  2. Spencer, T. E., Johnson, G. A., Bazer, F. W. and Burghardt, R. C. 2004. Implantation mechanisms: insights from the sheep. Reproduction 128:657-68. https://doi.org/10.1530/rep.1.00398
  3. Ashworth, C. J. and Bazer, F. W. 1989. Changes in ovine conceptus and endometrial function following asynchronous embryo transfer or administration of progesterone. Biol Reprod 40:425-33. https://doi.org/10.1095/biolreprod40.2.425
  4. Farin, C. E., Imakawa, K. and Roberts, R. M. 1989. In situ localization of mRNA for the interferon, ovine trophoblast protein-1, during early embryonic development of the sheep. Mol Endocrinol 3:1099-107. https://doi.org/10.1210/mend-3-7-1099
  5. Bazer, F. W. 1992. Mediators of maternal recognition of pregnancy in mammals. Proc Soc Exp Biol Med 199:373-84. https://doi.org/10.3181/00379727-199-43371A
  6. Roberts, R. M., Ealy, A. D., Alexenko, A. P., Han, C. S. and Ezashi, T. 1999. Trophoblast interferons. Placenta 20:259-64.
  7. Spencer, T. E. and Bazer, F. W. 1996. Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology 137:1144-7. https://doi.org/10.1210/en.137.3.1144
  8. Fleming, J. A., Choi, Y., Johnson, G. A., Spencer, T. E. and Bazer, F. W. 2001. Cloning of the ovine estrogen receptoralpha promoter and functional regulation by ovine interferontau. Endocrinology 142:2879-87. https://doi.org/10.1210/en.142.7.2879
  9. Wathes, D. C. and Hamon, M. 1993. Localization of oestradiol, progesterone and oxytocin receptors in the uterus during the oestrous cycle and early pregnancy of the ewe. J Endocrinol 138:479-92. https://doi.org/10.1677/joe.0.1380479
  10. Spencer, T. E. and Bazer, F. W. 1995. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the ewe. Biol Reprod 53:1527-43. https://doi.org/10.1095/biolreprod53.6.1527
  11. Hooper, S. B., Watkins, W. B. and Thorburn, G. D. 1986. Oxytocin, oxytocin-associated neurophysin, and prostaglandin F2 alpha concentrations in the utero-ovarian vein of pregnant and nonpregnant sheep. Endocrinology 119:2590-7. https://doi.org/10.1210/endo-119-6-2590
  12. Stevenson, K. R., Riley, P. R., Stewart, H. J., Flint, A. P. and Wathes, D. C. 1994. Localization of oxytocin receptor mRNA in the ovine uterus during the oestrous cycle and early pregnancy. J Mol Endocrinol 12:93-105. https://doi.org/10.1677/jme.0.0120093
  13. Lamming, G. E., Wathes, D. C., Flint, A. P., Payne, J. H., Stevenson, K. R. and Vallet, J. L. 1995. Local action of trophoblast interferons in suppression of the development of oxytocin and oestradiol receptors in ovine endometrium. J Reprod Fertil 105:165-75. https://doi.org/10.1530/jrf.0.1050165
  14. Spencer, T. E., Becker, W. C., George, P., Mirando, M. A., Ogle, T. F. and Bazer, F. W. 1995. Ovine interferon-tau inhibits estrogen receptor up-regulation and estrogen-induced luteolysis in cyclic ewes. Endocrinology 136:4932-44. https://doi.org/10.1210/en.136.11.4932
  15. Spencer, T. E., Becker, W. C., George, P., Mirando, M. A., Ogle, T. F. and Bazer, F. W. 1995. Ovine interferon-tau regulates expression of endometrial receptors for estrogen and oxytocin but not progesterone. Biol Reprod 53:732-45. https://doi.org/10.1095/biolreprod53.3.732
  16. Fleming, J. G., Spencer, T. E., Safe, S. H. and Bazer, F. W. 2006. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 147:899-911. https://doi.org/10.1210/en.2005-1120
  17. Spencer, T. E., Johnson, G. A., Burghardt, R. C. and Bazer, F. W. 2004. Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol Reprod 71: 2-10. https://doi.org/10.1095/biolreprod.103.024133
  18. Spencer, T. E., Burghardt, R. C., Johnson, G. A. and Bazer, F. W. 2004. Conceptus signals for establishment and maintenance of pregnancy. Anim Reprod Sci 82-83:537-50. https://doi.org/10.1016/j.anireprosci.2004.04.014
  19. Spencer, T. E., Gray, A., Johnson, G. A., Taylor, K. M. and Gertler, A. 1999. Effects of recombinant ovine interferon-tau, placental lactogen, and growth hormone on the ovine uterus. Biol Reprod 61:1409-18. https://doi.org/10.1095/biolreprod61.6.1409
  20. Gray, C. A., Bartol, F. F., Tarleton, B. J., Wiley, A. A. and Johnson, G. A. 2001. Developmental biology of uterine glands. Biol Reprod 65:1311-23. https://doi.org/10.1095/biolreprod65.5.1311
  21. Gray, C. A., Bartol, F. F., Taylor, K. M., Wiley, A. A. and Ramsey, W. S. 2000. Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle. Biol Reprod 62:448-56. https://doi.org/10.1095/biolreprod62.2.448
  22. Gray, C. A., Bazer, F. W. and Spencer, T. E. 2001. Effects of neonatal progestin exposure on female reproductive tract structure and function in the adult ewe. Biol Reprod 64:797-804. https://doi.org/10.1095/biolreprod64.3.797
  23. Gray, C. A., Taylor, K. M., Bazer, F. W. and Spencer, T. E. 2000. Mechanisms regulating norgestomet inhibition of endometrial gland morphogenesis in the neonatal ovine uterus. Mol Reprod Dev 57:67-78. https://doi.org/10.1002/1098-2795(200009)57:1<67::AID-MRD10>3.0.CO;2-M
  24. Gray, C. A., Taylor, K. M., Ramsey, W. S., Hill, J. R. and Bazer, F. W. 2001. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod 64:1608-13. https://doi.org/10.1095/biolreprod64.6.1608
  25. Kimmins, S. and MacLaren, L. A. 2001. Oestrous cycle and pregnancy effects on the distribution of oestrogen and progesterone receptors in bovine endometrium. Placenta 22:742-8. https://doi.org/10.1053/plac.2001.0708
  26. Geisert, R. D., Pratt, T. N., Bazer, F. W., Mayes, J. S. and Watson, G. H. 1994. Immunocytochemical localization and changes in endometrial progestin receptor protein during the porcine oestrous cycle and early pregnancy. Reprod Fertil Dev 6:749-60. https://doi.org/10.1071/RD9940749
  27. Hansen, P. J. 1995. Interactions between the immune system and the ruminant conceptus. J Reprod Fertil Suppl 49:69-82.
  28. Tekin, S. and Hansen, P. J. 2002. Natural killer-like cells in the sheep: functional characterization and regulation by pregnancy-associated proteins. Exp Biol Med (Maywood) 227: 803-11. https://doi.org/10.1177/153537020222700913
  29. Croy, B. A., Esadeg, S., Chantakru, S., van den Heuvel, M., Paffaro, V. A. 2003. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 59:175-91. https://doi.org/10.1016/S0165-0378(03)00046-9
  30. Short, R. V. 1969. Maternal recognition of pregnancy. In: Wolstenholm GEW, O'Conner M, editors. Foetal Anatomy. Churchill, London: Wiley, pp. 2-26.
  31. Moor, R. M. and Rowson, L. E. 1964. Influence of the Embryo and Uterus on Luteal Function in the Sheep. Nature 201:522-3. https://doi.org/10.1038/201522a0
  32. Moor, R. M. and Rowson, L. E. 1966. The corpus luteum of the sheep: effect of the removal of embryos on luteal function. J Endocrinol 34:497-502. https://doi.org/10.1677/joe.0.0340497
  33. Rowson, L. E. and Moor, R. M. 1967. The influence of embryonic tissue homogenate infused into the uterus, on the life-span of the corpus luteum in the sheep. J Reprod Fertil 13:511-6. https://doi.org/10.1530/jrf.0.0130511
  34. Heyman, Y., Camous, S., Fevre, J., Meziou, W., Martal, J. 1984. Maintenance of the corpus luteum after uterine transfer of trophoblastic vesicles to cyclic cows and ewes. J Reprod Fertil 70:533-40. https://doi.org/10.1530/jrf.0.0700533
  35. Wilson, M. E., Lewis, G. S., Bazer, F. W. 1979. Proteins of ovine blastocyst origin. Proc Soc Study Reprod, Quebec, Canada; p. 101A.
  36. Godkin, J. D., Bazer, F. W., Moffatt, J., Sessions, F., Roberts, R. M. 1982. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13-21. J Reprod Fertil 65:141-50. https://doi.org/10.1530/jrf.0.0650141
  37. Godkin, J. D., Bazer, F. W., Roberts, R. M. 1984. Ovine trophoblast protein 1, an early secreted blastocyst protein, binds specifically to uterine endometrium and affects protein synthesis. Endocrinology 114:120-30.
  38. Fincher, K. B., Bazer, F. W., Hansen, P. J., Thatcher, W. W., Roberts, R. M. 1986. Proteins secreted by the sheep conceptus suppress induction of uterine prostaglandin F-2 alpha release by oestradiol and oxytocin. J Reprod Fertil 76:425-33. https://doi.org/10.1530/jrf.0.0760425
  39. Vallet, J. L., Bazer, F. W., Fliss, M. F., Thatcher, W. W. 1988. Effect of ovine conceptus secretory proteins and purified ovine trophoblast protein-1 on interoestrous interval and plasma concentrations of prostaglandins F-2 alpha and E and of 13,14-dihydro-15-keto prostaglandin F-2 alpha in cyclic ewes. J Reprod Fertil 84:493-504. https://doi.org/10.1530/jrf.0.0840493
  40. Ott, T. L., Van Heeke, G., Hostetler, C. E., Schaule, T. K., Olmsted, J. J. 1993. Intrauterine injection of recombinant ovine interferon-tau extends the interestrous interval in sheep. Theriogenology 40:757-69. https://doi.org/10.1016/0093-691X(93)90211-M
  41. Imakawa, K., Anthony, R. V., Kazemi, M., Marotti, K. R., Polites, H. G., Roberts, R. M. 1987. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature 330:377-9. https://doi.org/10.1038/330377a0
  42. Pontzer, C. H., Torres, B. A., Vallet, J. L., Baze,r F. W., Johnson, H. M, 1988. Antiviral activity of the pregnancy recognition hormone ovine trophoblast protein-1. Biochem Biophys Res Commun 152:801-7. https://doi.org/10.1016/S0006-291X(88)80109-8
  43. Pontzer, C. H., Bazer, F. W. and Johnson, H. M. 1991. Antiproliferative activity of a pregnancy recognition hormone, ovine trophoblast protein-1. Cancer Res 51:5304-7.
  44. Roberts, R. M., Imakawa, K., Niwano, Y., Kazemi, M. and Malathy, P. V. 1989. Interferon production by the preimplantation sheep embryo. J Interferon Res 9:175-87. https://doi.org/10.1089/jir.1989.9.175
  45. Roberts, R. M., Cross, J. C. and Leaman, D. W. 1992. Interferons as hormones of pregnancy. Endocr Rev 13:432-52.
  46. Roberts, R. M., Leaman, D. W. and Cross, J. C. 1992. Role of interferons in maternal recognition of pregnancy in ruminants. Proc Soc Exp Biol Med 200:7-18. https://doi.org/10.3181/00379727-200-43387A
  47. Bazer, F. W., Spencer, T. E. and Ott, T. L. 1996. Placental interferons. Am J Reprod Immunol 35:297-308. https://doi.org/10.1111/j.1600-0897.1996.tb00485.x
  48. Hansen, T. R., Imakawa, K., Polites, H. G., Marotti, K. R. and Anthony, R. V., Roberts, R. M. 1988. Interferon RNA of embryonic origin is expressed transiently during early pregnancy in the ewe. J Biol Chem 263:12801-4.
  49. Fillion, C., Chaouat, G., Reinaud, P., Charpigny, J. C. and Martal, J. 1991. Immunoregulatory effects of ovine trophoblastin protein (oTP): all five isoforms suppress PHAinduced lymphocyte proliferation. J Reprod Immunol 19: 237-49. https://doi.org/10.1016/0165-0378(91)90038-R
  50. Tennakoon, D. K., Smith, R., Stewart, M. D., Spencer, T. E., Nayak, M., Welsh, C. J. 2001. Ovine IFN.tau modulates the expression of MHC antigens on murine cerebrovascular endothelial cells and inhibits replication of Theiler's virus. J Interferon Cytokine Res 21:785-92. https://doi.org/10.1089/107999001753238015
  51. Ealy, A. D., Alexenko, A. P., Keisler, D. H., Roberts, R. M. 1998. Loss of the signature six carboxyl amino acid tail from ovine interferon-tau does not affect biological activity. Biol Reprod 58:1463-8. https://doi.org/10.1095/biolreprod58.6.1463
  52. Nephew, K. P., Whaley, A. E., Christenson, R. K, Imakawa, K. 1993. Differential expression of distinct mRNAs for ovine trophoblast protein-1 and related sheep type I interferons. Biol Reprod 48:768-78. https://doi.org/10.1095/biolreprod48.4.768
  53. Baumbach, G. A., Duby, R. T., Godkin, J. D. 1990. Nglycosylated and unglycosylated forms of caprine trophoblast protein-1 are secreted by preimplantation goat conceptuses. Biochem Biophys Res Commun 172:16-21. https://doi.org/10.1016/S0006-291X(05)80166-4
  54. Guillomot, M., Michel, C., Gaye, P., Charlier, N., Trojan, J., Martal, J. 1990. Cellular localization of an embryonic interferon, ovine trophoblastin and its mRNA in sheep embryos during early pregnancy. Biol Cell 68:205-11. https://doi.org/10.1016/0248-4900(90)90309-Q
  55. Spencer, T. E., Ott, T. L., Bazer, F. W. 1996. tau-Interferon: pregnancy recognition signal in ruminants. Proc Soc Exp Biol Med 213:215-294. https://doi.org/10.3181/00379727-213-44053
  56. Novick, D., Cohen, B., Rubinstein, M. 1994. The human interferon alpha/beta receptor: characterization and molecular cloning. Cell 77:391-400. https://doi.org/10.1016/0092-8674(94)90154-6
  57. Domanski, P., Yan, H., Witte, M. M., Krolewski, J., Colamonici, O. R. 1995. Homodimerization and intermolecular tyrosine phosphorylation of the Tyk-2 tyrosine kinase. FEBS Lett 374:317-22. https://doi.org/10.1016/0014-5793(95)01094-U
  58. Rosenfeld, C. S., Han, C. S., Alexenko, A. P., Spencer, T. E., Roberts, R. M. 2002. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus. Biol Reprod 67:847-53. https://doi.org/10.1095/biolreprod.102.004267
  59. Darnell, J. E. Jr. 1997. STATs and gene regulation. Science 277:1630-5. https://doi.org/10.1126/science.277.5332.1630
  60. Darnell, J. E. Jr., Kerr, I. M., Stark, G. R. 1994. Jak.STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415-21. https://doi.org/10.1126/science.8197455
  61. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., Schreiber, R. D. 1998. How cells respond to interferons. Annu Rev Biochem 67:227-64. https://doi.org/10.1146/annurev.biochem.67.1.227
  62. Gauzzi, M. C., Velazquez, L., McKendry, R., Mogensen, K. E., Fellous, M., Pellegrini, S. 1996. Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J Biol Chem 271:20494-500. https://doi.org/10.1074/jbc.271.34.20494
  63. Muller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A. 1993. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 366:129-35. https://doi.org/10.1038/366129a0
  64. Colamonici, O. R., Yan, H., Domanski, P., Handa, R., Smalley, D. 1994. Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol 14:8133-42. https://doi.org/10.1128/MCB.14.12.8133
  65. Colamonici, O. R., Uyttendaele, H., Domanski, P., Yan, H., Krolewski, J. J. 1994. p135tyk2, an interferon-alpha-activated tyrosine kinase, is physically associated with an interferonalpha receptor. J Biol Chem 269:3518-22.
  66. Yan, H., Krishnan, K., Greenlund, A. C., Gupta, S., Lim, J. T. 1996. Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. Embo J 15:1064-74.
  67. Silvennoinen, O., Ihle, J. N., Schlessinger, J., Levy, D. E. 1993. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366:583-5. https://doi.org/10.1038/366583a0
  68. Shuai, K., Horvath, C. M., Huang, L. H., Qureshi, S. A., Cowburn, D., Darnell, J. E. Jr. 1994. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821-8. https://doi.org/10.1016/0092-8674(94)90357-3
  69. Haque, S. J. and Williams, B. R. 1994. Identification and characterization of an interferon (IFN)-stimulated response element-IFN-stimulated gene factor 3-independent signaling pathway for IFN-alpha. J Biol Chem 269:19523-9.
  70. Bhattacharya, S., Eckner, R., Grossman, S., Oldread, E., Arany, Z. 1996. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 383:344-7. https://doi.org/10.1038/383344a0
  71. Pine, R., Canova, A., Schindler, C. 1994. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFN alpha and IFN gamma, and is likely to autoregulate the p91 gene. Embo J 13:158-67.
  72. Choi, Y., Johnson, G. A., Burghardt, R. C., Berghman, L. R., Joyce, M. M. 2001. Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol Reprod 65:1038-49. https://doi.org/10.1095/biolreprod65.4.1038
  73. Johnson, G. A., Spencer, T. E., Hansen, T. R., Austin, K. J., Burghardt, R. C., Bazer, F.W. 1999. Expression of the interferon tau inducible ubiquitin cross-reactive protein in the ovine uterus. Biol Reprod 61:312-8. https://doi.org/10.1095/biolreprod61.1.312
  74. Choi, Y., Johnson, G. A., Spencer, T. E., Bazer, F. W. 2003. Pregnancy and interferon tau regulate major histocompatibility complex class I and beta2-microglobulin expression in the ovine uterus. Biol Reprod 68:1703-10. https://doi.org/10.1095/biolreprod.102.012708
  75. Johnson, G. A., Spencer, T. E., Burghardt, R. C., Joyce, M. M., Bazer, F. W. 2000. Interferon-tau and progesterone regulate ubiquitin cross-reactive protein expression in the ovine uterus. Biol Reprod 62:622-7. https://doi.org/10.1095/biolreprod62.3.622
  76. Johnson, G. A., Stewart, M. D., Gray, C. A., Choi, Y., Burghardt, R. C. 2001. Effects of the estrous cycle, pregnancy, and interferon-tau on 2',5'-oligoadenylate synthetase expression in the ovine uterus. Biol Reprod 64:1392-9. https://doi.org/10.1095/biolreprod64.5.1392
  77. Johnson, G. A., Burghardt, R. C., Newton, G. R., Bazer, F. W., Spencer, T. E. 1999. Development and characterization of immortalized ovine endometrial cell lines. Biol Reprod 61:1324-30. https://doi.org/10.1095/biolreprod61.5.1324
  78. Stewart, D. M., Johnson, G. A., Vyhlidal, C. A., Burghardt, R. C., Safe, S. H. 2001. Interferon-tau activates multiple signal transducer and activator of transcription proteins and has complex effects on interferon-responsive gene transcription in ovine endometrial epithelial cells. Endocrinology 142:98-107. https://doi.org/10.1210/en.142.1.98
  79. Spencer, T. E., Ott, T. L., Bazer, F. W. 1998. Expression of interferon regulatory factors one and two in the ovine endometrium: effects of pregnancy and ovine interferon tau. Biol Reprod 58:1154-62. https://doi.org/10.1095/biolreprod58.5.1154
  80. Stewart, D. M., Johnson, G. A., Vyhlidal, C. A., Burghardt, R. C., Safe, S. H. 2001. Interferon-tau activates multiple signal transducer and activator of transcription proteins and has complex effects on interferon-responsive gene transcription in ovine endometrial epithelial cells. Endocrinology 142:98-107. https://doi.org/10.1210/en.142.1.98
  81. Ott, T. L., Yin, J., Wiley, A. A., Kim, H. T., Gerami-Naini, B. 1998. Effects of the estrous cycle and early pregnancy on uterine expression of Mx protein in sheep (Ovis aries). Biol Reprod 59:784-94. https://doi.org/10.1095/biolreprod59.4.784
  82. Mirando, M. A., Short, E. C. Jr., Geisert, R. D., Vallet, J. L., Bazer, F. W. 1991. Stimulation of 2',5'-oligoadenylate synthetase activity in sheep endometrium during pregnancy, by intrauterine infusion of ovine trophoblast protein-1, and by intramuscular administration of recombinant bovine interferonalpha I1. J Reprod Fertil 93:599-607. https://doi.org/10.1530/jrf.0.0930599
  83. Johnson, G. A., Stewart, M. D., Gray, C. A., Choi, Y., Burghardt, R. C. 2001. Effects of the estrous cycle, pregnancy, and interferon-tau on 2',5'-oligoadenylate synthetase expression in the ovine uterus. Biol Reprod 64:1392-9. https://doi.org/10.1095/biolreprod64.5.1392
  84. Vallet, J. L., Barker, P. J., Lamming, G. E., Skinner, N., Huskisson, N. S. 1991. A low molecular weight endometrial secretory protein which is increased by ovine trophoblast protein-1 is a beta 2-microglobulin-like protein. J Endocrinol 130:R1-4. https://doi.org/10.1677/joe.0.130R001
  85. Han, C. S., Mathialagan, N., Klemann, S. W., Roberts, R. M. 1997. Molecular cloning of ovine and bovine type I interferon receptor subunits from uteri, and endometrial expression of messenger ribonucleic acid for ovine receptors during the estrous cycle and pregnancy. Endocrinology 138:4757-67. https://doi.org/10.1210/en.138.11.4757
  86. Stewart, M. D., Johnson, G. A., Bazer, F. W., Spencer, T. E. 2001. Interferon-tau (IFNtau) regulation of IFN-stimulated gene expression in cell lines lacking specific IFN-signaling components. Endocrinology 142:1786-94. https://doi.org/10.1210/en.142.5.1786
  87. Decker, T., Lew, D. J., Mirkovitch, J., Darnell, J. E. Jr. 1991. Cytoplasmic activation of GAF, an IFN-gammaregulated DNA-binding factor. Embo J 10:927-32.
  88. Schindler, C., Shuai, K., Prezioso, V. R., Darnell, J. E. Jr. 1992. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257:809-13. https://doi.org/10.1126/science.1496401
  89. Levy, D. E., Kessler, D. S., Pine, R., Reich, N., Darnell, J. E. Jr. 1988. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev 2:383-93. https://doi.org/10.1101/gad.2.4.383
  90. Reich, N., Evans, B., Levy, D., Fahey, D., Knight, E. Jr., Darnell, J. E. Jr. 1987. Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc Natl Acad Sci USA 84:6394-8. https://doi.org/10.1073/pnas.84.18.6394
  91. Kim, S., Choi, Y., Bazer, F. W., Spencer, T. E. 2003. Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1. Endocrinology 144:5203-14. https://doi.org/10.1210/en.2003-0665
  92. Gray, C. A., Adelson, D. L., Bazer, F. W., Burghardt, R. C., Meeusen, E. N., Spencer, T. E. 2004. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci USA 101:7982-7. https://doi.org/10.1073/pnas.0402669101
  93. Farrell, P. J., Broeze, R. J., Lengyel, P. 1979. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279:523-5. https://doi.org/10.1038/279523a0
  94. Korant, B. D., Blomstrom, D. C., Jonak, G. J., Knight, E. Jr. 1984. Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J Biol Chem 259:14835-9.
  95. Haas, A. L., Ahrens, P., Bright, P. M., Ankel, H. 1987. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262:11315-23.
  96. Johnson, G. A., Austin, K. J., Collins, A. M., Murdoch, W. J., Hansen, T. R. 1999. Endometrial ISG17 mRNA and a related mRNA are induced by interferon-tau and localized to glandular epithelial and stromal cells from pregnant cows. Endocrine 10:243-52. https://doi.org/10.1007/BF02738623
  97. Austin, K. J., Ward, S. K., Teixeira, M. G., Dean, V. C., Moore, D. W., Hansen, T. R. 1996. Ubiquitin cross-reactive protein is released by the bovine uterus in response to interferon during early pregnancy. Biol Reprod 54:600-6. https://doi.org/10.1095/biolreprod54.3.600
  98. Johnson, G. A., Burghardt, R. C., Newton, G. R., Bazer, F. W., Spencer, T. E. 1999. Development and characterization of immortalized ovine endometrial cell lines. Biol Reprod 61: 1324-30. https://doi.org/10.1095/biolreprod61.5.1324
  99. Samuel, C. E. 1991. Antiviral actions of interferon. Interferonregulated cellular proteins and their surprisingly selective antiviral activities. Virology 183:1-11. https://doi.org/10.1016/0042-6822(91)90112-O
  100. Lengyel, P. 1993. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA 90:5893-5. https://doi.org/10.1073/pnas.90.13.5893
  101. Salzberg, S., Hyman, T., Turm, H., Kinar, Y., Schwartz, Y. 1997. Ectopic expression of 2-5A synthetase in myeloid cells induces growth arrest and facilitates the appearance of a myeloid differentiation marker. Cancer Res 57:2732-40.
  102. Chin, K. C. and Cresswell, P. 2001. Viperin (cig5), an IFNinducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci U S A 98:15125-30. https://doi.org/10.1073/pnas.011593298
  103. Sun, B. J. and Nie, P. 2004. Molecular cloning of the viperin gene and its promoter region from the mandarin fish Siniperca chuatsi. Vet Immunol Immunopathol 101:161-70. https://doi.org/10.1016/j.vetimm.2004.04.013
  104. Olofsson, P. S., Jatta, K., Wagsater, D., Gredmark, S., Hedin, U. 2005. The antiviral cytomegalovirus inducible gene 5/viperin is expressed in atherosclerosis and regulated by proinflammatory agents. Arterioscler Thromb Vasc Biol 25:e113-6. https://doi.org/10.1161/01.ATV.0000170130.85334.38
  105. Helbig, K. J., Lau, D. T., Semendric, L., Harley, H. A., Beard, M. R. 2005. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 42:702-10. https://doi.org/10.1002/hep.20844
  106. Kang, D. C., Gopalkrishnan, R. V., Wu, Q., Jankowsky, E., Pyle, A. M., Fisher, P. B. 2002. mda-5: An interferoninducible putative RNA helicase with double-stranded RNAdependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci USA 99:637-42. https://doi.org/10.1073/pnas.022637199
  107. Kang, D. C., Gopalkrishnan, R. V., Lin, L., Randolph, A., Valerie, K. 2004. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosisinducing gene. Oncogene 23:1789-800.
  108. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M. 2005. Shared and unique functions of the DExD/H.box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851-8. https://doi.org/10.4049/jimmunol.175.5.2851
  109. Andrejeva, J., Childs, K. S., Young, D. F., Carlos, T. S., Stock, N. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101:17264-9. https://doi.org/10.1073/pnas.0407639101
  110. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H. 2005. IPS-1, an adaptor triggering RIG-I-. and Mda5-mediated type I interferon induction. Nat Immunol 6:981-8. https://doi.org/10.1038/ni1243
  111. Mohamed, O. A., Jonnaert, M., Labelle-Dumais, C., Kuroda, K., Clarke, H. J., Dufort, D. 2005. Uterine Wnt/beta-catenin signaling is required for implantation. Proc Natl Acad Sci USA 102:8579-84. https://doi.org/10.1073/pnas.0500612102
  112. Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., Palmarini, M. 2007. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprodution, Fertility and Development 19:65-78. https://doi.org/10.1071/RD06102
  113. Cooper, D. N. and Barondes, S. H. 1999. God must love galectins; he made so many of them. Glycobiology 9:979-84. https://doi.org/10.1093/glycob/9.10.979
  114. Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K. 1994. Galectins: a family of animal beta-galactoside-binding lectins. Cell 76:597-8. https://doi.org/10.1016/0092-8674(94)90498-7
  115. Kazemi, M., Amann, J. F., Keisler, D. H., Ing, N. H., Roberts, R. M. 1990. A progesterone-modulated, lowmolecular-weight protein from the uterus of the sheep is associated with crystalline inclusion bodies in uterine epithelium and embryonic trophectoderm. Biol Reprod 43:80-96. https://doi.org/10.1095/biolreprod43.1.80
  116. Gray, C. A., Dunlap, K. A., Burghardt, R. C., Spencer, T. E. 2005. Galectin-15 in ovine uteroplacental tissues. Reproduction 130:231-40. https://doi.org/10.1530/rep.1.00637
  117. Kirschke, H., Barrett, A. J. and Rawlings, N. D. 1998. Lysosomal Cysteine Proteases. Oxford: Oxford University Press
  118. Afonso, S., Romagnano, L., Babiarz, B. 1997. The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation. Development 124:3415-25.
  119. Elangovan, S. and Moulton, B. C. 1980. Blastocyst implantation in the rat and the immunohistochemical distribution and rate of synthesis of uterine lysosomal cathepsin D. Biol Reprod 23:663-8. https://doi.org/10.1095/biolreprod23.3.663
  120. Li, W. G., Jaffe, R. C. and Verhage, H. G. 1992. Immunocytochemical localization and messenger ribonucleic acid levels of a progesterone-dependent endometrial secretory protein (cathepsin L) in the pregnant cat uterus. Biol Reprod 47:21-8. https://doi.org/10.1095/biolreprod47.1.21
  121. Li, W. G., Jaffe, R. C., Fazleabas, A. T., Verhage, H. G. 1991. Progesterone-dependent cathepsin L proteolytic activity in cat uterine flushings. Biol Reprod 44:625-31. https://doi.org/10.1095/biolreprod44.4.625
  122. Verhage, H. G., Boomsma, R. A., Mavrogianis, P. A., Li, W., Fazleabas, A. T. and Jaffe, R. C. 1989. Immunological characterization and immunocytochemical localization of a progesterone-dependent cat endometrial secretory protein. Biol Reprod 41:347-54. https://doi.org/10.1095/biolreprod41.2.347
  123. Geisert, R. D., Blair, R. M., Pratt, T., Zavy, M. T. 1997. Characterization and proteolytic activity of a cathepsin L-like polypeptide in endometrium and uterine flushings of cycling, pregnant and steroid-treated ovariectomized gilts. Reprod Fertil Dev 9:395-402. https://doi.org/10.1071/R96106
  124. Roberts, R. M., Bazer, F. W., Baldwin, N., Pollard, W. E. 1976. Progesterone induction of lysozyme and peptidase activities in the porcine uterus. Arch Biochem Biophys 177: 499-507. https://doi.org/10.1016/0003-9861(76)90461-6
  125. Jokimaa, V., Oksjoki, S., Kujari, H., Vuorio, E. and Anttila, L. 2001. Expression patterns of cathepsins B, H, K, L and S in the human endometrium. Mol Hum Reprod 7:73-8. https://doi.org/10.1093/molehr/7.1.73
  126. Abrahamson, M., Barrett, A. J., Salvesen, G. and Grubb, A. 1986. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J Biol Chem 261:11282-9.
  127. Abrahamson, M., Olafsson, I., Palsdottir, A., Ulvsback, M., Lundwall, A. 1990. Structure and expression of the human cystatin C gene. Biochem J 268:287-94. https://doi.org/10.1042/bj2680287
  128. Hall, A., Hakansson, K., Mason, R. W., Grubb, A. and Abrahamson, M. 1995. Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases. J Biol Chem 270:5115-21. https://doi.org/10.1074/jbc.270.10.5115
  129. Grubb, A. and Lofberg, H. 1982. Human gamma-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis. Proc Natl Acad Sci U S A 79:3024-7. https://doi.org/10.1073/pnas.79.9.3024
  130. Uddin, S., Majchrzak, B., Woodson, J., Arunkumar, P., Alsayed, Y. 1999. Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem 274: 30127-31. https://doi.org/10.1074/jbc.274.42.30127
  131. Katsoulidis, E., Li, Y., Mears, H., Platanias, L. C. 2005. The p38 mitogen-activated protein kinase pathway in interferon signal transduction. J Interferon Cytokine Res 25:749-56. https://doi.org/10.1089/jir.2005.25.749
  132. Platanias, L. C. 2005. Mechanisms of type-I-.and type-IIinterferon-mediated signalling. Nat Rev Immunol 5:375-86. https://doi.org/10.1038/nri1604
  133. Uddin, S., Lekmine, F., Sharma, N., Majchrzak, B., Mayer, I. 2000. The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J Biol Chem 275:27634-40.
  134. Doualla-Bell, F. and Koromilas, A. E. 2001. Induction of PG G/H synthase-2 in bovine myometrial cells by interferon-tau requires the activation of the p38 MAPK pathway. Endocrinology 142:5107-15. https://doi.org/10.1210/en.142.12.5107
  135. Kaur, S., Uddin, S. and Platanias, L. C. 2005. The PI3' kinase pathway in interferon signaling. J Interferon Cytokine Res 25:780-7. https://doi.org/10.1089/jir.2005.25.780