DOI QR코드

DOI QR Code

An Integrated Process Control Scheme Based on the Future Loss

미래손실에 기초한 통합공정관리계획

  • 박창순 (중앙대학교 수학통계학부) ;
  • 이재헌 (중앙대학교 수학통계학부)
  • Published : 2008.04.30

Abstract

This paper considers the integrated process control procedure for detecting special causes in an ARIMA(0,1,1) process that is being adjusted automatically after each observation using a minimum mean squared error adjustment policy. It is assumed that a special cause can change the process mean and the process variance. We derive expressions for the process deviation from target for a variety of different process parameter changes, and introduce a control chart, based on the generalized likelihood ratio, for detecting special causes. We also propose the integrated process control scheme bases on the future loss. The future loss denotes the cost that will be incurred in a process remaining interval from a true out-of-control signal.

통합공정관리의 기본절차는 잡음이 내재하는 공정에 대하여 수정조치를 취하고, 수정활동 중 공정에 이상원인이 발생하면 관리도를 통하여 발생을 탐지하고 교정활동을 통하여 이를 제거하게 된다. 그러나 공정의 교정활동은 많은 시간과 비용을 수반하는 비생산적 요인을 유발할 수 있기 때문에 무조건적 교정활동은 생산성을 저하시키는 반대 급부도 동시에 내포하고 있다. 이 논문에서는 공정모형으로 ARIMA(0,1,1) 모형을 가정하고 공정 평균과 분산에 이상원인이 발생하는 경우 이를 탐지하는 절차를 소개하고, 이상신호의 시점에서 공정 잔여시간 동안 발생할 수 있는 미래손실에 기초하여 교정 활동의 여부를 판단하는 통합공정관리 절차를 제안한다.

Keywords

References

  1. Apley, D. W. and Shi, J. (1999). The GLRT for statistical process control of autocorrelated processes, IIE Transactions, 31, 1123-1134
  2. Box, G., Jenkins, G. and Reinsel, G. (1994). Time Series Analysis, Forecasting and Cont ol, 3rd ed., Prentice Hall, New Jersey
  3. Box, G. and Kramer, T. (1992). Statistical process monitoring and feedback adjustment-A discussion, Technometrics, 34, 251-267 https://doi.org/10.2307/1270028
  4. Box, G. and Luceno, A. (1994). Selection of sampling interval and action limit for discrete feedback adjustment, Technometrics, 36, 369-378 https://doi.org/10.2307/1269952
  5. Box, G. and Luceno, A. (1997). Statistical control by monitoring and feedback adjustment, John Wiley & Sons, New York
  6. Capilla, C., Ferrer, A., Romero, R. and Hualda, A. (1999). Integration of statistical and engineering process control in a continuous polymerization process, Technometrics, 41, 14-28 https://doi.org/10.1080/00401706.1999.10485592
  7. del Castillo, E. (2002). Statistical process adjustment for quality control, John Wiley & Sons, New York
  8. Janakiram, M. and Keats, J. B. (1998). Combining SPC and EPC in a hybrid industry, Journal of Quality Technology, 30, 189-200 https://doi.org/10.1080/00224065.1998.11979848
  9. Jiang, W. (2004). A joint monitoring scheme for automatically controlled processes, IIE Transactions, 36, 1201-1210 https://doi.org/10.1080/07408170490507828
  10. Jiang, W. and Tsui, K. L. (2000). An economic model for integrated APC and SPC control charts, IIE Transactions, 32, 505-513
  11. Jiang, W., Wu, H., Tsung, F., Nair, V. N. and Tsui, K. L. (2002). Proportional integral derivative charts for process monitoring, Technometrics, 44, 205-214 https://doi.org/10.1198/004017002188618392
  12. Lorenzen, T. J. and Vance, L. C. (1986). The economic design of control charts: A unified approach, Technometrics, 28, 3-10 https://doi.org/10.2307/1269598
  13. Mastrangelo, C. M. and Brown, E. C. (2000). Shift detection properties of moving centerline control chart schemes, Journal of Quality Technology, 32, 67-74 https://doi.org/10.1080/00224065.2000.11979972
  14. Montgomery, D. C. (1999). A perspective on models and the quality sciences: Some chal- lenges and future directions, ASQ Statistics Division Newsletter, 18, 8-13
  15. Montgoemry, D. C., Keats, J. B., Runger, G. C. and Messina, W. S. (1994). Integrating sta-tistical process control and engineering process control, Journal of Quality Technology, 26, 79-87 https://doi.org/10.1080/00224065.1994.11979508
  16. Nembhard, H. B. and Mastrangelo, C. M. (1998). Integrated process control for startup operations, Journal of Quality Technology, 30, 201-211 https://doi.org/10.1080/00224065.1998.11979849
  17. Park, C. (2001). A statistical process control procedure with adjustments and monitoring, Nonlinear Analysis, 47, 2061-2072 https://doi.org/10.1016/S0362-546X(01)00333-9
  18. Park, C., Lee, J. and Kim, Y. (2004). Economic design of a variable sampling rate EWMA control chart, IIE Transactions, 36, 387-399 https://doi.org/10.1080/07408170490426116
  19. Park, C. and Reynolds, M. Jr. (2008). Economic design of an integrated process control procedure with repeated adjustments and EWMA monitoring, to be published
  20. Reynolds, M. R. Jr. and Stoumbos, Z. G. (2004a). Control charts and the effcient allocation of sampling resources, Technometrics, 46, 200-214 https://doi.org/10.1198/004017004000000257
  21. Reynolds, M. R. Jr. and Stoumbos, Z. G. (2004b). Should observations be grouped for efective process monitoring?, Journal of Quality Technology, 36, 343-366 https://doi.org/10.1080/00224065.2004.11980283
  22. Reynolds, M. R. Jr. and Stoumbos, Z. G. (2005). Should exponentially weighted moving average and cumulative sum charts be used with Shewhart limits?, Technometrics, 47, 409-424 https://doi.org/10.1198/004017005000000382
  23. Reynolds, M. R. Jr. and Park, C. (2008). CUSUM charts for detecting special causes in integrated process control, IIE Transactions, under revision for publication
  24. Ruhhal, N. H., Runger, G. C. and Dumitrescu, M. (2000). Control charts and feedback adjustments for a jump disturbance model, Journal of Quality Technology, 32, 379-394 https://doi.org/10.1080/00224065.2000.11980024
  25. Vander Wiel, S. A. (1996). Monitoring processes that wander using integrated moving average models, Technometrics, 38, 139-151 https://doi.org/10.2307/1270407
  26. Vander Wiel, S. A., Tucker, W. T., Faltin, F. W. and Doganaksoy, N. (1992). Algorithmic statistical process control: Concepts and an application, Technometrics, 34, 286-297 https://doi.org/10.2307/1270035

Cited by

  1. Parameter estimation in a readjustment procedure in the multivariate integrated process control vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1275