DOI QR코드

DOI QR Code

Removal of Organic Wax and Particles on Final Polished Wafer by Ozonated DI Water

  • Yi, Jae-Hwan (Leading Technology Team, R&D Center, Siltron Inc.) ;
  • Lee, Seung-Ho (Department of Materials Engineering, Hanyang University) ;
  • Kim, Tae-Gon (Department of Materials Engineering, Hanyang University) ;
  • Lee, Gun-Ho (Leading Technology Team, R&D Center, Siltron Inc.) ;
  • Choi, Eun-Suck (Leading Technology Team, R&D Center, Siltron Inc.) ;
  • Park, Jin-Goo (Department of Materials Engineering, Hanyang University)
  • Published : 2008.06.30

Abstract

In this study, a new cleaning process with a low cost of ownership (CoO) was developed with ozonated DI water ($DIO_3$). An ozone concentration of 40 ppm at room temperature was used to remove organic wax film and particles. Wax residues thicker than $200\;{\AA}$ remained after only a commercial dewaxer treatment. A $DIO_3$ treatment in place of a dewaxer showed a low removal rate on a thick wax layer of $8000\;{\AA}$ due to the diffusion-limited reaction of ozone. A dewaxer was combined with a $DIO_3$ rinse to reduce the wax removal time and remove wax residue completely. Replacing DI rinse with the $DIO_3$ rinse resulted in a surface with a contact angle of less than $5^{\circ}$, which indicates no further cleaning steps would be required. The particle removal efficiency (PRE) was further improved by combining a SC-1 cleaning step with the $DIO_3$ rinsing process. A reduction in the process time was obtained by introducing $DIO_3$ cleaning with a dewaxing process.

Keywords

References

  1. N. Shimoi, M. Kurokawa, A. Tanabe, N. Koizumi and Y. Matsushita, J. Cryst. Growth, 210, 31 (2000) https://doi.org/10.1016/S0022-0248(99)00641-7
  2. W. Kern and D. A. Puotien, R.C.A. Review, 31(2), 187 (1970). http://www.scopus.com/scopus/record/display.url?eid=2-s2.0-0014800514&view = basic & origin = inward & txGid =vqe4qM1SXw_P8reNqhp_zhk%3a2
  3. J. Staehelin and J. Hoigene, Environ. Sci. Technol., 16, 676 (1983) https://doi.org/10.1021/es00104a009
  4. M. G. Alder and G. R. Hill, J. Am. Chem. Soc., 72, 1884 (1950) https://doi.org/10.1021/ja01161a007
  5. T. Ohmi, T. Isagawa, T. Imaoka and I. Sugiyama, J. Electrochem. Soc., 139, 3336 (1992) https://doi.org/10.1149/1.2069075
  6. S. Noda, K. Kawase, H. Horibe, M. Kuzumoto and T. Kataoka, J. Electrochem. Soc., 152, 73 (2005) https://doi.org/10.1149/1.1833311
  7. J. Hoigne, H. Bader, Dis. Org. Comp., 17, 185 (1983)
  8. J. Staehelin and J. Hoigne, Environ. Sci. Eng., 17, 183 (1982)
  9. S. Ojima, K. Kubo, M. Kato, M. Toda and T. Ohmi, J. Electrochem. Soc., 144, 1482 (1997) https://doi.org/10.1149/1.1837616
  10. F. De Smedt, S. De Gendt, M. M. Heyns and C. Vinckier, Solid State Phenomena., 211, 76 (2001)
  11. H. Vankerckhoven, F. D. Smedt, B. V. Herp, M. Claes, S. D. Gendt, M. M. Heyns and C. Vinckier, Ozone Sci. and Eng.,. 24, 391 (2002) https://doi.org/10.1080/01919510208901629
  12. R. Kumar and P. Bose, Ind. and Eng. Chem. Res., 43, 1418 (2004) https://doi.org/10.1021/ie020490z
  13. J. Hoigne and H. Bader, Inorg. Comp. and Rad. Wat. Res., 19, 993 (1985)
  14. C. V. Sonntag, J. Wat. Sup. Res. And Tech., 45, 84 (1996)
  15. R. E. Buhler, J. Staehelin and J. Hoigne, J. Phys. Chem., 88, 2560 (1984) https://doi.org/10.1021/j150656a026
  16. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem., 17, 513 (1988)