DOI QR코드

DOI QR Code

At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축

  • Kim, Sang-Ug (Seoul National University BK21 SIR Group, Seoul National University) ;
  • Lee, Kil-Seong (Dept. of Civil and Environmental Engineering, Seoul National University)
  • 김상욱 (서울대학교 BK21 안전하고 지속가능한 사회기반건설 사업단) ;
  • 이길성 (서울대학교 공과대학 건설.환경공학부)
  • Published : 2008.01.31

Abstract

The low flow analysis is an important part in water resources engineering. Also, the results of low flow frequency analysis can be used for design of reservoir storage, water supply planning and design, waste-load allocation, and maintenance of quantity and quality of water for irrigation and wild life conservation. Especially, for identification of the uncertainty in frequency analysis, the Bayesian approach is applied and compared with conventional methodologies in at-site low flow frequency analysis. In the first manuscript, the theoretical background for the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) method and Metropolis-Hasting algorithm are studied. Two types of the prior distribution, a non-data- based and a data-based prior distributions are developed and compared to perform the Bayesian MCMC method. It can be suggested that the results of a data-based prior distribution is more effective than those of a non-data-based prior distribution. The acceptance rate of the algorithm is computed to assess the effectiveness of the developed algorithm. In the second manuscript, the Bayesian MCMC method using a data-based prior distribution and MLE(Maximum Likelihood Estimation) using a quadratic approximation are performed for the at-site low flow frequency analysis.

저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점 빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의Ⅰ편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러 과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

Keywords

References

  1. 김상욱 (2007). Low flow frequency analysis using Bayesian approach. 박사학위논문, 서울대학교
  2. Bickel, P.J., and Doksum, K.A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, Inc., San Francisco, CA
  3. Chip, S., and Greenberg, E. (1995). 'Understanding the Metropolis-Hastings algorithm.' Journal of the American Statistical Association, Vol. 49, No. 4, pp. 327-335
  4. Chowdhury, J.U., and Stedinger, J.R. (1991). 'Confidence interval for design flood with estimated skew coefficient.' Journal of Hydraulic Engineering, Vol. 117, No. 7, pp. 811-931 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(811)
  5. Cohn, T.A., Lane, W.L., and Stedinger, J.R. (2001). 'Confidence intervals for expected moments algorithm flood quantile estimates.' Water Resources Research, Vol. 37, No. 6, pp. 1695- 1706 https://doi.org/10.1029/2001WR900016
  6. Coles, S.G., and Powell, E.A. (1996). 'Bayesian methods in extreme value modeling: A review and new developments.' International Statistical Review, Vol. 64, No. 1, pp. 119-136 https://doi.org/10.2307/1403426
  7. Filliben, J.J. (1975). 'The probability plot correlation coefficient test for normality.' Technometrics, Vol. 17, No. 1, pp. 111-117 https://doi.org/10.2307/1268008
  8. Gamerman, D. (1997). Markov Chain Monte Carlo-Stochastic Simulation for Bayesian Inference. Chapman & Hall, London, UK
  9. Gary, D.T. (1987). 'A comparison of methods for estimating low flow characteristics of streams.' Water Resources Bulletin, Vol. 23, No. 6, pp. 1077-1083 https://doi.org/10.1111/j.1752-1688.1987.tb00858.x
  10. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis, Second Edition. Chapman & Hall/CRC, New York, NY
  11. Gumbel, E.J. (1958). Statistics of Extremes. Columbia University Press, New York, NY.
  12. Kavetski, D., Kuczera, G., and Fanks, S.W. (2006). 'Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory.' Water Resources Research, Vol. 42, W03407 https://doi.org/10.1029/2005WR004368
  13. Kingston, G.B., Lambert, M.F., and Maier, H.R. (2005). 'Bayesian training of artificial neural networks used for water resources modeling.' Water Resources Research, Vol. 41, W12409, DOI: 10.1029/2005WR004152
  14. Kuczera, G. (1999). 'Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference.' Water Resources Research, Vol. 35, No. 5, pp. 1551-1557 https://doi.org/10.1029/1999WR900012
  15. Kuczera, G., and Parent E. (1998). 'Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm.' Journal of Hydrology, Vol. 211, pp. 69-85 https://doi.org/10.1016/S0022-1694(98)00198-X
  16. Lee, K.S., and Kim, S.U. (2007). 'Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method.' Hydrological Processes, In press(on-line published) https://doi.org/10.1002/hyp.6778
  17. Madsen, H., and Rojsberg, H.D. (1997). 'Generalized least squares and empirical Bayes estimation in regional partial duration series index flood modeling.' Water Resources Research, Vol. 33, No. 4, pp. 771-781 https://doi.org/10.1029/96WR03850
  18. Meeker, W.Q., and Escobar, L.A. (1998). Statistical Methods for Reliablility Data. John Wiley and Sons, New York, NY
  19. Metropolis, N., Rosenbluth, A.W., Teller A.H., and Teller E. (1953). 'Equations of state calculations by fast computing machines.' Journal of Chemical Physics, Vol. 21, pp. 1087-1092 https://doi.org/10.1063/1.1699114
  20. Nathan, R.J., and McMahon, T.A. (1990). 'Practical aspects of low flow frequency analysis.' Water Resources Research, Vol. 26, No. 9, pp. 2135- 2141
  21. O’Connell, D.R.H., Ostenaa, D.A., Levish, D.R., Klinger, and R.E. (2002). 'Bayesian flood frequency analysis with paleohydrologic bound data.' Water Resources Research, Vol. 38, No. 5, pp. 1-14 https://doi.org/10.1029/2000WR000028
  22. Onoz, B., and Bayazit, M. (2001). 'Power distribution for low streamflows.' Journal of Hydrologic Engineering, Vol. 6, No. 5, pp. 429-435 https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(429)
  23. Reis Jr., D.S., and Stedinger, J.R. (2005). 'Bayesian MCMC flood frequency analysis with historical information.' Journal of Hydrology, Vol. 313, pp. 97-116 https://doi.org/10.1016/j.jhydrol.2005.02.028
  24. Reis Jr., D.S., Stedinger, J.R., and Martins, E.S. (2005). 'Bayesian generalized least squares regression with application to log Pearson type III regional skew estimation.' Water Resources Research, Vol. 41, W10419 https://doi.org/10.1002/hyp.6778
  25. Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). Weak Convergence and Optimal Scaling of Random Walk Metropolis-Hastings Algorithms. Technical Report, University of Cambridge
  26. Seidou, O., Ouarda, T.B.M.J., Barbet, M., Bruneau, P., and Bobee, B. (2006). 'A parametric Bayesian combination of local and regional information in flood frequency analysis.' Water Resources Research, Vol. 42, W11408, DOI: 10.1029/2005 WR004397
  27. Stedinger, J.R. (1983). 'Confidence intervals for design events.' Journal of Hydraulic Engineering, Vol. 109, No. 1, pp. 13-27 https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(13)
  28. Stedinger, J.R., Vogel, R.M., and Foufoula-Georgiou, E. (1993). Frequency Analysis of Extreme Events In Handbook of Hydrology, Maidment, D.(eds). McGraw-Hill, New York, Chapter 18
  29. Thiemann, M., Trosset, M., Gupta, H.V., and Sorooshian, S. (2001). 'Bayesian recursive parameter estimation for hydrologic models.' Water Resources Research, Vol. 37, No. 10, pp. 2521-2535 https://doi.org/10.1029/2000WR900405
  30. Vicens, G.J., Rodriguez-Iturbe, I., and Schaake Jr, J.C. (1975). 'A Bayesian framework for the use of regional information in hydrology.' Water ResourcesResearch, Vol. 11, No. 3, pp. 405-414 https://doi.org/10.1029/WR011i003p00405
  31. Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. (2003). 'Shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters.' Water Resources Research, Vol. 39, No. 8, SWC 1-16 https://doi.org/10.1029/2002WR001642
  32. Wang, Q.J. (2001). 'A Bayesian joint probability approach for flood record augmentation.' Water Resources Research, Vol. 37, No. 6, pp. 1707- 1712 https://doi.org/10.1029/2000WR900401
  33. Wood, E.F., and Rodriguez-Iturbe, I. (1975a). 'Bayesian inference and decision making for extreme hydrologic events.' Water Resources Research, Vol. 11, No. 4, pp. 533-542 https://doi.org/10.1029/WR011i004p00533
  34. Wood, E.F., and Rodriguez-Iturbe, I. (1975b). A Bayesian approach to analyze uncertainty among flood frequency models. Water Resources Research, Vol. 11, No. 6, pp. 839-843 https://doi.org/10.1029/WR011i006p00839
  35. Zhang, B., and Govindaraju, R.S. (2000). 'Prediction of watershed runoff using Bayesian concepts and modular neural networks.' Water Resources Research, Vol. 3, pp. 753-762

Cited by

  1. Variation on the Growth Rate of Plants by Submersion of High Turbidity - A Case Study on Salix Species - vol.46, pp.9, 2013, https://doi.org/10.3741/JKWRA.2013.46.9.957
  2. A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.793
  3. Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events vol.43, pp.4, 2010, https://doi.org/10.3741/JKWRA.2010.43.4.337
  4. A Probabilistic Estimation of Changing Points of Seoul Rainfall Using BH Bayesian Analysis vol.43, pp.7, 2010, https://doi.org/10.3741/JKWRA.2010.43.7.645