• Title/Summary/Keyword: Quadratic approximation

Search Result 139, Processing Time 0.021 seconds

HAUSDORFF DISTANCE BETWEEN THE OFFSET CURVE OF QUADRATIC BEZIER CURVE AND ITS QUADRATIC APPROXIMATION

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.641-648
    • /
    • 2007
  • In this paper, we present the exact Hausdorff distance between the offset curve of quadratic $B\'{e}zier$ curve and its quadratic $GC^1$ approximation. To illustrate the formula for the Hausdorff distance, we give an example of the quadratic $GC^1$ approximation of the offset curve of a quadratic $B\'{e}zier$ curve.

Function Approximation Using an Enhanced Two-Point Diagonal Quadratic Approximation (개선된 이점 대각 이차 근사화를 이용한 함수 근사화)

  • Kim, Jong-Rip;Kang, Woo-Jin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.475-480
    • /
    • 2004
  • Function approximation is one of the most important and active research fields in design optimization. Accurate function approximations can reduce the repetitive computational effort fur system analysis. So this study presents an enhanced two-point diagonal quadratic approximation method. The proposed method is based on the Two-point Diagonal Quadratic Approximation method. But unlike TDQA, the suggested method has two quadratic terms, the diagonal term and the correction term. Therefore this method overcomes the disadvantage of TDQA when the derivatives of two design points are same signed values. And in the proposed method, both the approximate function and derivative values at two design points are equal to the exact counterparts whether the signs of derivatives at two design points are the same or not. Several numerical examples are presented to show the merits of the proposed method compared to the other forms used in the literature.

FUZZY REGRESSION ANALYSIS WITH NON-SYMMETRIC FUZZY COEFFICIENTS BASED ON QUADRATIC PROGRAMMING APPROACH

  • Lee, Haekwan;Hideo Tanaka
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.63-68
    • /
    • 1998
  • This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming fomulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two approximation models called an upper approximation model and a lower approximation model are considered as the regression models. Thus, we also propose an integrated quadratic programming problem by which the upper approximation model always includes the lower approximation model at any threshold level under the assumption of the same centers in the two approximation models. Sensitivities of Weight coefficients in the proposed quadratic programming approaches are investigated through real data.

  • PDF

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE

  • Kim, Yeon-Soo;Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • In this paper we find an explicit form of upper bound of Hausdorff distance between given cubic spline curve and its quadratic spline approximation. As an application the approximation of offset curve of cubic spline curve is presented using our explicit error analysis. The offset curve of quadratic spline curve is exact rational spline curve of degree six, which is also an approximation of the offset curve of cubic spline curve.

  • PDF

ERROR ANALYSIS FOR APPROXIMATION OF HELIX BY BI-CONIC AND BI-QUADRATIC BEZIER CURVES

  • Ahn, Young-Joon;Kim, Philsu
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.861-873
    • /
    • 2005
  • In this paper we approximate a cylindrical helix by bi-conic and bi-quadratic Bezier curves. Each approximation method is $G^1$ end-points interpolation of the helix. We present a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show that the error bound has the approximation order three and monotone increases as the length of the helix increases. As an illustration we give some numerical examples.

Sequential Approximate Optimization by Dual Method Based on Two-Point Diagonal Quadratic Approximation (이점 대각 이차 근사화 기법을 쌍대기법에 적용한 순차적 근사 최적설계)

  • Park, Seon-Ho;Jung, Sang-Jin;Jeong, Seung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • We present a new dual sequential approximate optimization (SAO) algorithm called SD-TDQAO (sequential dual two-point diagonal quadratic approximate optimization). This algorithm solves engineering optimization problems with a nonlinear objective and nonlinear inequality constraints. The two-point diagonal quadratic approximation (TDQA) was originally non-convex and inseparable quadratic approximation in the primal design variable space. To use the dual method, SD-TDQAO uses diagonal quadratic explicit separable approximation; this can easily ensure convexity and separability. An important feature is that the second-derivative terms of the quadratic approximation are approximated by TDQA, which uses only information on the function and the derivative values at two consecutive iteration points. The algorithm will be illustrated using mathematical and topological test problems, and its performance will be compared with that of the MMA algorithm.

Saddlepoint Approximation to Quadratic Form and Application to Intraclass Correlation Coefficient

  • Na, Jong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.497-504
    • /
    • 2008
  • In this paper we studied the saddlepoint approximations to the distribution of quadratic forms in normal variables. We derived the approximations as a special case of Na & Kim (2005). Also applications to a statistic which concerns intraclass correlation coefficient are presented. Simulations show the accuracy and availability of the suggested approximations.

  • PDF

An efficient algorithm for the non-convex penalized multinomial logistic regression

  • Kwon, Sunghoon;Kim, Dongshin;Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.129-140
    • /
    • 2020
  • In this paper, we introduce an efficient algorithm for the non-convex penalized multinomial logistic regression that can be uniformly applied to a class of non-convex penalties. The class includes most non-convex penalties such as the smoothly clipped absolute deviation, minimax concave and bridge penalties. The algorithm is developed based on the concave-convex procedure and modified local quadratic approximation algorithm. However, usual quadratic approximation may slow down computational speed since the dimension of the Hessian matrix depends on the number of categories of the output variable. For this issue, we use a uniform bound of the Hessian matrix in the quadratic approximation. The algorithm is available from the R package ncpen developed by the authors. Numerical studies via simulations and real data sets are provided for illustration.

APPROXIMATION OF QUADRIC SURFACES USING SPLINES

  • Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • In this paper we present an approximation method of quadric surface using quartic spline. Our method is based on the approximation of quadratic rational B$\acute{e}$zier patch using quartic B$\acute{e}$zier patch. We show that our approximation method yields $G^1$ (tangent plane) continuous quartic spline surface. We illustrate our results by the approximation of helicoid-like surface.

  • PDF

Sensitivity Analysis in Principal Component Regression with Quadratic Approximation

  • Shin, Jae-Kyoung;Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.623-630
    • /
    • 2003
  • Recently, Tanaka(1988) derived two influence functions related to an eigenvalue problem $(A-\lambda_sI)\upsilon_s=0$ of real symmetric matrix A and used them for sensitivity analysis in principal component analysis. In this paper, we deal with the perturbation expansions up to quadratic terms of the same functions and discuss the application to sensitivity analysis in principal component regression analysis(PCRA). Numerical example is given to show how the approximation improves with the quadratic term.

  • PDF