DOI QR코드

DOI QR Code

Isolation of Protease-Producing Arctic Marine Bacteria

  • Published : 2005.06.30

Abstract

We isolated and identified three protease-producing bacteria that had inhabited the region around the Korean Arctic Research Station Dasan located at Ny-Alesund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. Biofilms were collected from the surface of a floating pier and from dead brown algae in a tide pool near the seashore. The biofilm samples were transported to the Korea Polar Research Institute (KOPRI) under frozen conditions, diluted in sterilized seawater, and cultured on Zobell agar plates with 1% skim milk at $10^{\circ}C$. Three clear zone forming colonies were selected as protease-producing bacteria. Phylogenetic analysis based on 16S rDNA sequences showed that these three stains shared high sequence similarities with Pseudoalteromonas elyakovii, Exiguobacterium oxidotofewm Pseudomonas jessenii, respectively. We expect these Arctic bacteria may be used to develop new varieties of protease that are active at low temperatures.

Keywords

References

  1. Akagawa-Matsushita, M., M. Matsuo, Y. Koga, and K. Yamasato. 1992. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int. J. Syst. Bacteriol., 42, 621-627. https://doi.org/10.1099/00207713-42-4-621
  2. Alfredsson, G.A., H.M. Gudmundsson, J.Y. Xiang, and M.M. Kristjansson. 1995. Subtilisin-like serine proteases from psychrophilic marine bacteria. J. Mar. Biotechnol., 3, 71-72.
  3. Arnorsdottir, J., M.M. Kristjansson, and R. Ficner. 2005. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation. FEBS J., 272(3), 832-845. https://doi.org/10.1111/j.1742-4658.2005.04523.x
  4. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis, Univ. Newcastle, Newcastle upon Tyne, UK.
  5. Felsenstein, J. 1993. PHYLIP (Phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA.
  6. Fruhling, A., P. Schumann, H. Hippe, B. Straubler, and E. Stackebrandt. 2002. Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int. J. Syst. Evol. Microbiol., 52, 1171-1176. https://doi.org/10.1099/ijs.0.02185-0
  7. Huston, A.L., B.B. Krieger-Brockett, and J.W. Deming. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol., 2(4), 383-388. https://doi.org/10.1046/j.1462-2920.2000.00118.x
  8. Irwin, J.A., G.A. Alfredsson, A.J. Lanzetti, H.M. Gudmundsson, and P.C. Engel. 2001. Purification and characterisation of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol. Lett., 201(2), 285-290. https://doi.org/10.1111/j.1574-6968.2001.tb10770.x
  9. James, J. and B.K. Simpson. 1996. Application of enzymes in food processing. Crit. Rev. Food Sci. Nutr., 36, 437-463. https://doi.org/10.1080/10408399609527735
  10. Kim, I.G., M.H. Lee, S.Y. Jung, J.J. Song, T.K. Oh, and J.H. Yoon. 2005. Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol., 55, 885-889. https://doi.org/10.1099/ijs.0.63308-0
  11. Lee, S.O., J. Kato, K. Nakashima, A. Kuroda, T. Ikeda, N. Takiguchi, and H. Ohtake. 2002. Cloning and characterization of extracellular metal protease gene of the algicidal marine bacterium Pseudoalteromonas sp. strain A28. Biosci. Biotechnol. Biochem., 66(6), 1366-1369. https://doi.org/10.1271/bbb.66.1366
  12. Lee, Y.K., H.W. Kim, K.H. Cho, S.-H. Kang, H.K. Lee, and Y. Kim. 2004. Phylogenetic analysis of culturable arctic bacteria. Ocean & Polar Res., 26, 51-58. https://doi.org/10.4217/OPR.2004.26.1.051
  13. Marcello, A., A. Loregian, V. De Filippis, A. Fontana, T.R. Hirst, and G. Palu. 1996. Identification and characterization of an extracellular protease activity produced by the marine Vibrio sp. 60. FEMS Microbiol. Lett., 136(1), 39-44. https://doi.org/10.1111/j.1574-6968.1996.tb08022.x
  14. Miyamoto, K., E. Nukui, M. Hirose, F. Nagai, T. Sato, Y. Inamori, and H. Tsujibo. 2002. A metalloprotease (MprIII) involved in the chitinolytic system of a marine bacterium, Alteromonas sp. strain O-7. Appl. Environ. Microbiol., 68(11), 5563-5570. https://doi.org/10.1128/AEM.68.11.5563-5570.2002
  15. Puente, X.S., L.M. Sanchez, C.M. Overall, and C. Lopez-Otin. 2003. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet., 4(7), 544-558. https://doi.org/10.1038/nrg1111
  16. Romanenko, L.A., N.V. Zhukova, M. Rhode, A.M. Lysenko, V. Mikhailov, and E. Stackebrandt. 2003. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol., 53, 125-131. https://doi.org/10.1099/ijs.0.02234-0
  17. Romanenko, L.A., V.V. Mikhailov, A.M. Lysenko, and V.I. Stapanenko. 1995. A new species of melanin-producing bacteria of the genus Alteromonas. Mikrobiologiya, 64, 74-77.
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406-425.
  19. Secades, P., B. Alvarez, and J.A. Guijarro. 2001. Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol., 67(6), 2436-2444. https://doi.org/10.1128/AEM.67.6.2436-2444.2001
  20. Storer, A.C. 1991 Engineering of proteases and protease inhibition. Curr. Opin. Biotechnol., 2, 606-613. https://doi.org/10.1016/0958-1669(91)90087-L
  21. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  22. Verhille, S., N. Baida, F. Dabboussi, D. Izard, and H. Leclerc. 1999. Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst. Appl. Microbiol., 22, 45-58. https://doi.org/10.1016/S0723-2020(99)80027-7
  23. Vermeij, P. and D. Blok. 1996. New peptide and protein drugs. Pharm. World Sci., 18, 87-93. https://doi.org/10.1007/BF00417755
  24. Yumoto, I., M. Hishinuma-Narisawa, K. Hirota, T. Shingyo, F. Takebe, Y. Nodasaka, H. Matsuyama, and I. Hara. 2004. Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int. J. Syst. Evol. Microbiol., 54, 2013-2017. https://doi.org/10.1099/ijs.0.63129-0

Cited by

  1. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard vol.195, pp.5, 2013, https://doi.org/10.1007/s00203-013-0880-z
  2. Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean vol.582, pp.12, 2008, https://doi.org/10.1016/j.febslet.2008.04.025
  3. Psychrobacter glaciei sp. nov., isolated from the ice core of an Arctic glacier vol.66, pp.4, 2016, https://doi.org/10.1099/ijsem.0.000939
  4. Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms vol.35, pp.9, 2012, https://doi.org/10.1007/s00300-012-1182-7
  5. Phylogenetic diversity of planktonic bacteria in the Chukchi Borderland region in summer vol.32, pp.6, 2013, https://doi.org/10.1007/s13131-013-0271-y
  6. Relationships between Arctic and Antarctic Shewanella strains evaluated by a polyphasic taxonomic approach vol.33, pp.4, 2010, https://doi.org/10.1007/s00300-009-0730-2
  7. List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region vol.34, pp.1, 2012, https://doi.org/10.4217/OPR.2012.34.1.101
  8. Psychrobacter fjordensis sp. nov., a psychrotolerant bacterium isolated from an Arctic fjord in Svalbard vol.108, pp.6, 2015, https://doi.org/10.1007/s10482-015-0580-6
  9. Diversity of cold-active protease-producing bacteria from arctic terrestrial and marine environments revealed by enrichment culture vol.48, pp.4, 2010, https://doi.org/10.1007/s12275-010-0015-z
  10. Culture-independent and -dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea vol.35, pp.1, 2012, https://doi.org/10.1007/s00300-011-1044-8
  11. Roles of Microbial Activity and Anthraquinone-2,7-disulfonate as a Model of Humic Substances in Leaching of Iron from Hematite into Seawater vol.34, pp.11, 2018, https://doi.org/10.2116/analsci.18P147