DOI QR코드

DOI QR Code

Genomic DNA Extracted from Ancient Antarctic Glacier Ice for Molecular Analyses on the Indigenous Microbial Communities

  • Lee, Sang-Hoon (Korea Polar Research Institute, KORDI) ;
  • Bidle, Kay (Institute of Marine and Coastal Science, Rutgers University) ;
  • Falkowski, Paul (Institute of Marine and Coastal Science, Rutgers University) ;
  • Marchant, David (Department of Earth Sciences, Boston University)
  • Published : 2005.06.30

Abstract

From ancient Antarctic glacier ice, we extracted total genomic DNA that was suitable for prokaryotic 16S rDNA gene cloning and sequencing, and bacterial artificial chromosome (BAC) library and end-sequencing. The ice samples were from the Dry Valley region. Age dating by $^{40}Ar/^{39}Ar$ analysis on the volcanic ashes deposited in situ indicated the ice samples are minimum 100,000-300,000 yr (sample DLE) and 8 million years (sample EME) old. Further assay proved the ice survived freeze-thaw cycles or other re-working processes. EME, which was from a small lobe of the basal Taylor glacier, is the oldest known ice on Earth. Microorganisms, preserved frozen in glacier ice and isolated from the rest of the world over a geological time scale, can provide valuable data or insight for the diversity, distribution, survival strategy, and evolutionary relationships to the extant relatives. From the 16S gene cloning study, we detected no PCR amplicons with Archaea-specific primers, however we found many phylotypes belonging to Bacteria divisions, such as Actinobacteria, Acidobacteria, Proteobacteria $({\alpha},\;{\beta},\;and\;{\gamma})$, Firmicutes, and Cytophaga-Flavobacterium-Bacteroid$. BAC cloning and sequencing revealed protein codings highly identical to phenylacetic acid degradation protein paaA, chromosome segregation ATPases, or cold shock protein B of present day bacteria. Throughput sequencing of the BAC clones is underway. Viable and culturable cells were recovered from the DLE sample, and characterized by their 16S rDNA sequences. Further investigation on the survivorship and functional genes from the past should help unveil the evolution of life on Earth, or elsewhere, if any.

Keywords

References

  1. Brinkmeyer, R., K. Knittel, J. Jurgens, H. Weyland, R. Amann, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol., 69, 6610-6619. https://doi.org/10.1128/AEM.69.11.6610-6619.2003
  2. Beja, O., L. Aravind, E.V. Koonin, M.T. Suzuki, A. Hadd, L.P. Nguyen, S.B. Jovanovich, C.M. Gates, R.A. Feldman, J.L. Spudich, E.L. Spudich, and E.F. DeLong. 2000. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science, 289, 1902-1906. https://doi.org/10.1126/science.289.5486.1902
  3. Beja, O., M.T. Suzuki, J.F. Heidelberg, W.C. Nelson, C.M. Preston, T. Hamada, J.A. Eisen, C.M. Fraser, and E.F. DeLong. 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 415, 630-633. https://doi.org/10.1038/415630a
  4. Carpenter, E.J., S. Lin, and D.G. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol., 66, 4514-4517. https://doi.org/10.1128/AEM.66.10.4514-4517.2000
  5. Christner, B.C., E. Mosley-Thompson, L.G. Thompson, and J.N. Reeve. 2003. Bacterial recovery from ancient glacier ice. Environ. Microbiol., 5, 433-436. https://doi.org/10.1046/j.1462-2920.2003.00422.x
  6. Christner, B.C., E. Mosley-Thompson, L.G. Thompson, and J.N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol., 3, 570-577. https://doi.org/10.1046/j.1462-2920.2001.00226.x
  7. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Nat. Acad. Sci. USA., 89, 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
  8. Karl, D.M., D.F. Bird, K. Bjorkman, T. Houlihan, R. Shackelford, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science, 286, 2144-2147. https://doi.org/10.1126/science.286.5447.2144
  9. Lane, D.J. 1991. 16S/23S rRNA sequencing. p. 115-175. In: Nucleic acid techniques in bacterial systematics. eds by E. Stackebrandt and M. Goodfellow. Wiley, New York.
  10. Lee, S. and J. Fuhrman. 1991. Species composition shift of confined bacterioplankton studied at the level of community DNA. Mar. Ecol. Prog. Ser., 79, 195-201. https://doi.org/10.3354/meps079195
  11. Ludwig, W., S.H. Bauer, M. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann, and K.H. Schleifer. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett., 153, 181-190. https://doi.org/10.1111/j.1574-6968.1997.tb10480.x
  12. Marchant, D.R., A.R. Lewis, W.M. Phillips, E.J. Moore, R.A. Souchez, G.H. Denton, D.E. Sugden, N. Potter, Jr., and G.P. Landis. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geol. Soc. Am. Bull., 114, 718-730. https://doi.org/10.1130/0016-7606(2002)114<0718:FOPGAS>2.0.CO;2
  13. Miteva, V.I., P.P. Sheridan, and J.E. Brenchley. 2004. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl. Environ. Microbiol., 70, 202-213. https://doi.org/10.1128/AEM.70.1.202-213.2004
  14. Noble, R.T. and J.A. Fuhrman. 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol., 14, 113-118. https://doi.org/10.3354/ame014113
  15. Pace, N.R., D.A. Stahl, D.J. Lane, and G.J. Olsen. 1986. The analysis natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol., 9, 1-55. https://doi.org/10.1007/978-1-4757-0611-6_1
  16. Pearce, D.A. 2003. Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Microb. Ecol., 46, 92-105. https://doi.org/10.1007/s00248-002-2039-3
  17. Priscu, J.C., E.E. Adams, W.B. Lyons, M.A. Voytek, D.W. Mogk, R.L. Brown, C.P. McKay, C.D. Takacs, K.A. Welch, C.F. Wolf, J.D. Kirshtein, and R. Avci. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 286, 2141-2144. https://doi.org/10.1126/science.286.5447.2141
  18. Priscu, J.C., C.H. Fritsen, E.E. Adams, S.J. Giovannoni, H.W. Pearl, C.P. McKay, P.T. Doran, D.A. Gordon, B.D. Lanoil, and J.L. Pinckney. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280, 2095-2098. https://doi.org/10.1126/science.280.5372.2095
  19. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  20. Sawstrom, C., P. Mumford, W. Marshall, A. Hodson, and J . Laybourn-Parry. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard $79{^{\circ}C}$). Polar Biol., 25, 591-596.
  21. Schmidt, T.M., E.F. DeLong, and N.R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol., 173, 4371-4378.
  22. Shizuya, H., B. Birren, U.J. Kim, V. Mancino, T. Slepak, Y. Tachiiri, and M. Simon. 1992. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Nat. Acad. Sci. USA., 89, 8794-8797. https://doi.org/10.1073/pnas.89.18.8794
  23. Sugden, D.E., D.R. Marchant, N. Potter, Jr., R.A. Souchez, G.H. Denton, C.C. Swisher III, and J.-L. Tison. 1995. Preservation of Miocene glacier ice in east Antarctica. Nature, 376, 412-414. https://doi.org/10.1038/376412a0
  24. Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol., 62, 625-630.
  25. Tanner, M.A., B.M. Goebel, M.A. Dojka, and N.R. Pace. 1998. Specific ribosomal DNA sequences from diverse environmental settings correlated with experimental contaminants. Appl. Environ. Microbiol., 64, 3110-3113.
  26. Ward, D.M., R. Weller, and M.M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345, 63-65. https://doi.org/10.1038/345063a0