DOI QR코드

DOI QR Code

Psychrophilic Extremophiles from Antarctica: Biodiversity and Biotechnological Potential

  • Bowman John P. (School of Agricultural Science, University of Tasmania) ;
  • Abell Gyu C.J. (School of Agricultural Science, University of Tasmania) ;
  • Nichols Carol A. Mancuso (School of Agricultural Science, University of Tasmania)
  • Published : 2005.06.30

Abstract

Recently there has been a rapid accumulation of knowledge of microbial life in cold and frozen ecosystems. This understanding has revealed the extensive diversity of psychrophilic prokaryotes. Cultivation-based and molecular-based surveys have been performed in Antarctic habitats ranging from glacial ice to continental shelf sediments. Results indicate that psychrophilic taxa permeate throughout the Bacteria while they represent a more mysterious element of diversity in the Archaea owing to a notable lack of cultured strains. In certain cold climate ecosystems the diversity of psychrophilic populations reach levels comparable to the richest temperate equivalents. Within these communities must exist tremendous genetic diversify that is potentially of fundamental and of practical value. So far this genetic pool has been hardly explored. Only recently have genomic data become available for various psychrophilic prokaryotes and more is required. This owes to the fact that psychrophilic microbes possess manifold mechanisms for cold adaptations, which not only Provide enhanced survival and Persistence but Probably also contributes to niche specialisation. These mechanisms, including cold-active and ice-active proteins, polyunsaturated lipids and exopolysaccharides also have a great interest to biotechnologists.

Keywords

References

  1. Abell, G.C.J. and J.P. Bowman. 2005. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol. Ecol., 51, 265-277. https://doi.org/10.1016/j.femsec.2004.09.001
  2. ACTM XXII. 1999. Antarctic and Southern Ocean Coalition report on the XXIIth Antarctic Treaty consultative meeting, Lima, Peru, 1999.
  3. Bano, N. and J.T. Hollibaugh. 2002. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol., 68, 505-518. https://doi.org/10.1128/AEM.68.2.505-518.2002
  4. Bowman, J.P. 2004a. Psychrophilic prokaryote structural-functional relationships, biogeography and evolution within marine sediment. Cell. Mol. Biol., 50, 503-515.
  5. Bowman, J.P. 2004b. Some evidence for the recent evolution of psychrophilic prokaryotes. In: Scientific Program of the International Symposium on Microbial Ecology, Aug. 22-27, 2004. Cancun, Mexico. .
  6. Bowman, J.P., S.A. McCammon, M.V. Brown, D.S. Nichols, and T.A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol., 63, 3068-3078.
  7. Bowman, J.P., S.A. McCammon, J.A.E. Gibson, P.D. Nichols, and L. Robertson. 2003. Microbial metabolic activity and community structure within Antarctic continental shelf sediment. Appl. Environ. Microbiol., 69, 2448-2462. https://doi.org/10.1128/AEM.69.5.2448-2462.2003
  8. Bowman, J.P. and R.D. McCuaig. 2003. Diversity and biogeography of prokaryotes dwelling in Antarctic continental shelf sediment. Appl. Environ. Microbiol., 69, 2463-2484. https://doi.org/10.1128/AEM.69.5.2463-2483.2003
  9. Bowman, J.P., S.M. Rea, S.A. McCammon, and T.A. McMeekin. 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ. Microbiol., 2, 227-237. https://doi.org/10.1046/j.1462-2920.2000.00097.x
  10. Brinkmeyer, R., K. Knittel, J. Jurgens, H. Weyland, R. Amann, and E. Helmke. 2003. Diversity and structure of bacterial communities in arctic versus antarctic pack ice. Appl. Environ. Microbiol., 69, 6610-6619. https://doi.org/10.1128/AEM.69.11.6610-6619.2003
  11. Brown, M.V. and J.P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol., 35, 267-275. https://doi.org/10.1111/j.1574-6941.2001.tb00812.x
  12. Brown, M.V. and J.P. Bowman. 2002. Microbial ecology of Southern Ocean sea-ice. Recent Adv. Microbiol., 9, 27-54.
  13. Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43, 783-791. https://doi.org/10.2307/2531532
  14. Connon, S.A. and S.J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol., 68, 3878-3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
  15. Connor, A. 2004. On thin ice: How the quest for a billiondollar microbe is running out of control in Earth’s last wilderness. [cited 2004-02-02].
  16. Decho, A.W. 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes, p. 73-153. In: Oceanograpy and Marine Biololgy, Annual Review. ed. by M. Barnes. Aberdeen Univ. Press, Aberdeen.
  17. Garrity, G.M., J. Bell, and T.G. Lilburn. 2003. Taxonomic outline of the Procaryotes, Bergey’s Manual of Systematic Bacteriology, 2nd Edition. Release 4, October 2003, Springer-Verlag, New York. .
  18. Hahn, M.W., P. Stadler, Q.L. Wu, and M. Pockl. 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J. Microbiol. Meth., 57, 379-390. https://doi.org/10.1016/j.mimet.2004.02.004
  19. Harris, P.T., G. Brancolini, L. Armand, M. Busetti, R.J. Beaman, G. Giorgetti, M. Presti, and F. Trincardi. 2001. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Mar. Geol., 179, 1-8. https://doi.org/10.1016/S0025-3227(01)00183-9
  20. Joseph, S.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol., 69, 7210-7215. https://doi.org/10.1128/AEM.69.12.7210-7215.2003
  21. Kaeberlein, T., K., Lewis, and S.S. Epstein. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296, 1127-1129. https://doi.org/10.1126/science.1070633
  22. Kirby, A. 2004. Antarctica's resources 'at risk'. [cited 2004- 02-02].
  23. Kirchman, D.L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol., 39, 91-100.
  24. Li, L., C. Kato, and K. Horikoshi. 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar. Biotechnol., 1, 391-400. https://doi.org/10.1007/PL00011793
  25. Mancuso Nichols, C.A., S. Garon, J.P. Bowman, G. Raguenes, and J. Guezennec. 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. J. Appl. Microbiol., 96, 1057-1066. https://doi.org/10.1111/j.1365-2672.2004.02216.x
  26. Mancuso Nichols, C.A., S. Garon-Lardiere, J.P. Bowman, P.D. Nichols, J.A.E. Gibson, and J. Guezennec. 2004. Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb. Ecol. (In press)
  27. Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev., 39, 144-167.
  28. Nichols, D.S., J.P. Bowman, K. Sanderson, C. Mancuso Nichols, T. Lewis, T.A. McMeekin, and P.D. Nichols. 1999. Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr. Opin. Biotechnol., 10, 240-246. https://doi.org/10.1016/S0958-1669(99)80042-1
  29. Powell, S.M., J.P. Bowman, I. Snape, and J.S. Stark. 2003. Microbial community variation in pristine and polluted near shore Antarctic sediments. FEMS Microbiol. Ecol., 45, 135-145. https://doi.org/10.1016/S0168-6496(03)00135-1
  30. Ravenschlag, K., K. Sahm, J. Pernthaler, and R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol., 65, 3982-3989.
  31. Schoenborn, L., P.S. Yates, B.E. Grinton, P. Hugenholtz, and P.H. Janssen. 2004. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl. Environ. Microbiol., 70, 4363-4366. https://doi.org/10.1128/AEM.70.7.4363-4366.2004
  32. Simon, M., F.O. Glockner, and R. Amann. 1999. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol., 18, 275-284. https://doi.org/10.3354/ame018275
  33. Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt, and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol., 70, 4748-4755. https://doi.org/10.1128/AEM.70.8.4748-4755.2004
  34. Venter, J.C., K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D.Y. Wu, I. Paulsen, K.E. Nelson, W. Nelson, D.E. Fouts, S. Levy, A.H. Knap, M.W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y. Rogers, and H.O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66-74. https://doi.org/10.1126/science.1093857