Mineralogical Characterization of Buserite from the Janggun and Dongnam Mines, Korea

장군광산과 동남광산에서 산출되는 부서라이트의 광물학적 특성

  • Choi, Hun-Soo (Petroleum & Marine Resources Research Division, KIGAM) ;
  • Kim, Soo-Jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Jeong-Jin (Department of Earth and Environmental Sciences, Andong National University)
  • 최헌수 (한국자원연구원 해저자원연구부) ;
  • 김수진 (서울대학교 지구환경과학부) ;
  • 김정진 (안동대학교 지구환경과학과)
  • Published : 2005.12.01

Abstract

X-ray diffraction (XRD), Electron microprobe analyses (EPMA) and heating experiments were used for mineralogical characterization of natural buserites collected from the Janggun and Dongnam mines. They are closely associated with $7-{\AA}$ phase (usually rancieite) in manganese oxide ores of the supergene oxidation zones of manganese carbonate deposits. Electron microprobe analyses give the average formula $(Ca_{0.78}Mg_{0.64}Mn^{2+}\;_{0.45})Mn^{4+}\;_{8.03}O_{18}\cdot13.2H_{2}O\;and\;(Zn_{0.81}Ca_{0.77}Mg_{0.26})Mn^{4+}\;_{8.00}O_{18}\cdot10.9H_{2}O$ for buserite from the Janggun and the Dongnam mine, respectively. The basal reflection of buserite from the Janggun mine shifts continuously from $9.86\;{\AA}\;at\;40^{\circ}C\;to\;7.60\;{\AA}\;at\;90^{\circ}C$, but the buserite from the Dongnam mine shows tendency of decreasing intensity in the $9.67^{\circ}C$ peak and of increasing intensity in the $7.53\;{\AA}$ peak in the range of $40\∼90^{\circ}C$, showing no gradual shifting of peaks.

장군광산과 동남광산에서 산출되는 부서라이트에 대한 광물학적 특성을 연구하기 위하여 X-선 회절분석, 전자현미분석, 열분석 실험을 실시하였다. 장군 광산과 동남 광산에서의 부서라이트는 망간탄산염광상의 표성 산화 작용에 의해 형성된 산화망간 광석 내에 란시아이트와 함께 산출된다. 전자현미분석결과 장군광산 부서라이트의 화학 조성은 ($Ca_{0.78}Mg_{0.64}Mn^{2+}_{0.45})Mn^{4+}_{8.03}O_{18}\cdot13.2H_{2}O$이며 동남광산에서 산출되는 부서라이트는 ($Zn_{0.81}Ca_{0.77}Mg_{0.26}Mn^{4+}_{8.00}O_{18}\cdot10.9H_{2}O$이다. 장군광산의 부서라이트의 저면 격자 간격은 $40^{\circ}C$에서 $9.86\;{\AA}$이며, $90^{\circ}C$에서는 $7.60\;{\AA}$로 온도가 상승함에 따라 점진적으로 감소한다. 그러나 동남광산에서 $40^{\circ}C$부터 $90^{\circ}C$까지의 온도가 변화함에 따라 점진적인 회절선의 이동은 나타나지 않고 $9.67\;{\AA}$의 회절선의 강도는 감소하고 $7.53\;{\AA}$의 회절강도는 증가하는 경향을 보여준다.

Keywords

References

  1. Arrhenius, G.O. and Tsai, A.G. (1981) Structure, phase transformation and prebiotic catalysis in marine manganate minerals. SIO Reference Series, 81-28, 1-19
  2. Bilinski, H., Giovanoli, R., Usui, A. and Hanzel, D. (2002) Characterization of Mn oxides in cemented streambed crusts from Pinal Creek, Arizona, U.S.A., and in hot-spring deposits from YunoTaki Falls, Hokkaido, Japan. American Mineralogist, 87, 580-591 https://doi.org/10.2138/am-2002-0423
  3. Cao, H. and Suib, S.L. (1994) Highly efficient heterogenous photooxidation of 2-propanol to acetone with amorpous Manganese oxide catalyst. Journal of the American Chemical Society, 116, 5334-5342 https://doi.org/10.1021/ja00091a044
  4. Chang, S. (1983) Mineralogy of rancieite and associated minerals in the Dongnam Mine, Korea. M.S. Thesis, Seoul National University, Korea, 54p
  5. Ching, S. and Suib, S.L. (1997) Synthetic routes to microporous Manganese oxides. Comments on Inorganic Chemistry, 19, 263-282 https://doi.org/10.1080/02603599708032741
  6. Choi, H. and Kim, S.J. (1992) Chemistry and dehydration behavior of (Ca, Mg)-buserite from the Janggun mine, Korea. Journal of Mineralogical Society of Korea, 5, 102-108
  7. Chukhrov, F.V., Gorshkov, A.I., Drit, V.A., Sivtosov, A.V., Uspenskaya, T.Y. and Sakharov, B.A (1984) Structural models and method of study of buserite. Izvest. AN SSSR, Ser. Geology, 10, 65-76 https://doi.org/10.1130/0091-7613(1982)10<65:TBVITC>2.0.CO;2
  8. Dubrawski, L.V. and Ostwald, J. (1987) Thermal transformations in marine manganates. Neues Jahrbuch fur Mineralogie Monatschafte, 9, 406-418
  9. Giovanoli, R. and Arrhenius, G. (1988) Structural chemistry of marine manganese and iron minerals and synthetic model compounds. In P. Halbach, G. Friedrich, and U. Stackelberg, Eds., The manganese nodule belt of the Pacific Ocean Ferdinand Enke Verlag, Stuttgart, 20-37
  10. Glasby, G.P., Uscinowicz, Sz. and Sochan, J.A. (1996) Marine ferromanganese concretions from the Polish exclusive economic zone: Influence of major inflows of North Sea water. Marine Georesources and Geotechnology, 14, 335-352 https://doi.org/10.1080/10641199609388321
  11. Hawthorne, F.C. (1992) Bond topology, bond valence and structure stability. In: Price, G.D. and Ross, N.L., Eds., The stability of minerals. Mineralogical Society Series, 3, Chapman & Hall, London, 25-87
  12. Ito, A., Usui, A., Kajiwara, Y. and Nakano, T. (1998) Strontium isotopic compositions and paleooceanographic implication of fossil manganese nodules in DSDP(ODP cores, Leg 1-126. Geochimica et Cosmochimica Acta, 62, 1545-1554 https://doi.org/10.1016/S0016-7037(98)00051-9
  13. Kim, S.J. (1969) Mineralographic study on the sulfide minerals associated with manganese ores from Janggun mine, Korea. Journal of Mineralogical Society of Korea, 5, 167-188
  14. Kim, S.J. (1970) Mineralogy and genesis of the manganese ores from Janggun mine, Korea. Journal of Mineralogical Society of Korea, 6, 135-186
  15. Kim, S.J. (1975) Janggunite, a new mineral from Janggun mine, Bonghwa, Korea. Journal of Korea Institute Mining Geology, 8, 17-124 (in Korean with an English abstract)
  16. Kim, S.J., Hong, M.S., Kim, K.T. and Park, H.L (1962) Geological map of Korea, Samgeun quadrangle. Geological Survey of Korea, 87p (in Korean with an English abstract)
  17. Kim, S.J. (1991) New characterization of takanelite. American Mineralogist, 76, 1426-1430
  18. Kumagai, N., Komaba, S. Abe, K. and Yashiro, H. (2005) Synthesis of metal-doped todorokite-type $MnO_2$ and its cathode characteristics for rechargeable lithium batteries. Journal of Power Sources, 146, 310-314 https://doi.org/10.1016/j.jpowsour.2005.03.145
  19. Lanson B., Drits V.A., Silvester E.J. and Manceau A. (2000) Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na- rich monoclinic buserite at low pH: New data from X-ray diffraction. American Mineralogist, 85, 826-835 https://doi.org/10.2138/am-2000-5-625
  20. Lee, H.K., Ko, S.J. and Imai, N. (1990) Genesis of the lead-zinc-silver and iron deposits of the Janggun Mine, as related to their structural features: Structural control and wall rock alteration of ore-formation. Journal of Korea Institute Mining Geology, 23, 161-181 (in Korean with an English abstract)
  21. Manceau, A., Drits, V.A, Silvester, E., Bartoli, C. and Lanson, B. (1997) Structural mechanism of $Co_{2+}$ oxydation by the phyllomanganate buserite. American Mineralogist, 82, 1150-1175 https://doi.org/10.2138/am-1997-11-1213
  22. Mellin, T. and Lei, G. (1993) Stabilization of 10 Amanganates by interlayer cationsand hydrothermal treatment: Implications for the mineralogy of marine manganese concretions. Marine Geology, 115, 67-83 https://doi.org/10.1016/0025-3227(93)90075-7
  23. Ramamouthy, V., Ramasubbu, A, Muthusubramanian, S. and Sivasubramanian, S. (1999) Pillared buserite as a new catalytic material for the 1,3-dipolar cycloaddition of alpha-phenyl-N-(p-methyphenil) nitrone with electron deficient olefins. Synthetic Communications, 29, 21-26 https://doi.org/10.1080/00397919908085730
  24. Shen, Y.F., Suib, S.L. and O'Young, C.L. (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. Journal of American Chemical Society, 116, 11020-11029 https://doi.org/10.1021/ja00103a018
  25. Shen, Y.F., Suib, S.L. and O'Young, C.L. (1996) Cu containing octahedral molecular sieves and octahedral layered materials. Journal of Catalysis, 161, 115-122 https://doi.org/10.1006/jcat.1996.0168
  26. Shen, Y.F., Zerger, R.P., De Guzman, R.N., Suib, S.L., Mc Crudy, L., Potter, D.I. and O'Young, C.L. (1993) Manganese oxide octahedral molecular sieves: Preparation, characterization and applications. Science, 260, 511-515 https://doi.org/10.1126/science.260.5107.511
  27. Tian, Z.R., Yin, Y.G., Suib, S.L. and O'Y oung, C.L. (1997) Effect of $Mg^{2+}$ ions on the formation of todorokite type manganese oxide octahedral molecular sieves. Chemistry of Materials, 9, 1126-1133 https://doi.org/10.1021/cm960478v
  28. Usui, A. (1979) Nickel and copper accumulation as essential elements in 10 $\AA$ manganate of deepsea manganese nodules. Nature, 279, 411-413 https://doi.org/10.1038/279411a0
  29. Usui, A. and Glasby, G.P. (1998) Submarine hydrothermal manganese deposits in the Izu-BoninMariana arc: An overview. The Island Arc, 7, 422-431 https://doi.org/10.1111/j.1440-1738.1998.00200.x
  30. Wasserman, S.R., Carrado, K.A., Yuchs, S.E., Shen, Y.F., Cao, H. and Sui, S. (1995) The structure of new synthetic manganese oxide octahedral molecular sieves. Physica, B 209, 674-676 https://doi.org/10.1016/0921-4526(94)00786-U
  31. Wong, S.T. and Cheng, S. (1992) Synthesis and characterization of pillared buserite. Inorganic Chemistry, 31, 1165-1172 https://doi.org/10.1021/ic00033a010