A Study of Compressibility on a Natural Almandine Using Synchrotron Radiation

방사광을 이용한 천연산 알만딘의 압축성 연구

  • Hwang Gil Chan (Department of Earth and Environment Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kim Young-Ho (Department of Earth and Environment Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 황길찬 (경상대학교 지구환경과학과, 기초과학연구소) ;
  • 김영호 (경상대학교 지구환경과학과, 기초과학연구소)
  • Published : 2005.12.01

Abstract

Garnet is one of the major minerals down to the top of lower mantle approximately 660 km with spinel and pyroxenes. Garnet transforms into perovskite and corundum in the lower mantle, however its sequence is still in controversy. We measured the compressibility of a natural almandine at high-pressure up to 62 CPa using Mao-Bell type diamond anvil cell (DAC) at room temperature. Chemical formula of the specimen is ($Fe_{2.52}Ca_{0.21}Mg_{0.18}Mn_{0.12})Al_{2.23}Si_{2.97}O_{12}$. Results of this compression study are as follows: a : $10.175\;{\AA}$, V : $1251.16\;{\AA}^{3}$, $D_{x}$ : $5.265\;g/cm^{3}$ at 62 GPa; bulk modulus is 156 GPa using Birch-Murnaghan equation of state (EoS) with a fixed $K_{0}\;'$ of 4. This study would be the first time attempt accomplished with the high pressure DAC using synchrotron radiation at the Pohang Light Source (PLS) in Korea.

석류석은 하부맨틀의 최상부인 약 660 km깊이까지 올리빈, 휘석과 함께 주요한 구성광물 중의 하나이다. 석류석은 약 660 km를 지나 하부맨틀에서 페롭스카이트와 코런덤으로 상변이를 하는 것으로 알려져 있으나, 실험방법 및 상변이 깊이와 상변이 경로에 대해서 아직까지 논쟁의 대상이 되고 있다. 실험은 천연산 알만딘(($Fe_{2.52}Ca_{0.21}Mg_{0.18}Mn_{0.12})Al_{2.23}Si_{2.97}O_{12}$)에 마오-벨 타입의 다이아몬드 앤빌기기를 이용하여 실온에서 62 GPa까지 압축실험을 시행하여 체적탄성계수를 결정하였다. 실험결과는 다음과 같다 : 62 GPa에서 격자상수 = $10.775\;{\AA}$, 체적 = $1251.16\;{\AA}^{3}$, X-선밀도 = $5.265\;g/cm^{3}$, 버치-머내한 상태방정식을 이용하여 계산한 체적탄성계수는 156 GPa이다(이때 $K_{0}\;'$는 4로 가정함). 본 연구는 포항가속기연구소의 방사광을 이용하여 시행한 국내 첫 고압실험결과이다.

Keywords

References

  1. Akaogi, M., Ohmura, N. and Suzuki, T. (1998) High-pressure dissociation of $Fe_{3}Al_{2}Si_{3}O_{12}$ garnet: phase boundary by phase equilibrium experiments and calorimetry. Phys. Earth Planet. Int., 106, 103-113 https://doi.org/10.1016/S0031-9201(97)00084-8
  2. Akaogi, M., Tanaka, A. and Ito, E. (2002) Garnetilmenite-perovskite transitions in the system $Mg_{2}Si_{4}O_{12}-Mg_{3}Al_{2}Si_{3}O_{12}$ at high pressures and high temperatures: phase equilibria, calorimetry and implication for mantle structure. Phys. Earth Planet. Int., 132, 303-324 https://doi.org/10.1016/S0031-9201(02)00075-4
  3. Anderson, D.L. (1989) Theory of the Earth. Blackwell Scientific Publications, Oxford, pp.366
  4. Angel, R.J. (2001) Equations of state. In Hazen, R.M., Downs, R.T. (Eds.), 'High-pressure, hightemperature crystal chemistry.'-Reviews in Mineralogy and Geochemistry, 41, 35-60
  5. Birch, F. (1947) Finite elastic strain of cubic crystals. Phys. Rev., 71, 809-824 https://doi.org/10.1103/PhysRev.71.809
  6. Conrad, P.G. (1998) The stability of almandine at high-pressures and -temperatures, Properties of earth and planetary materials at high-pressure and -temperature. Geopys. Monogr., AGU, 101, 393-400
  7. Dziewonski, A.M. and Anderson, D.L. (1981) Preliminary Reference Earth Model. Phys. Earth Planet. Int., 25, 297-356 https://doi.org/10.1016/0031-9201(81)90046-7
  8. Fei, Y., Saxena, S.K. and Navrotsky, A. (1990) Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system $MgO-SiO_{2}$ at high-pressure and high temperature. J. Geophys. Res., 95, 6915-6928 https://doi.org/10.1029/JB095iB05p06915
  9. Hazen, R.M. and Finger, L.W. (1978) Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Am. Mineral., 63, 297-303
  10. Hazen, R.M. and Finger, L.W. (1989a) Highpressure crystal chemistry of andradite and pyrope: revised procedures for high-pressure diffraction experiments. Am. Mineral., 74, 352-359
  11. Hazen, R.M. and Finger, L.W. (1989b) Highpressure and high-temperature crystal chemistry of beryllium oxide. J. Appl. Phys., 59, 3728-3733
  12. Irifune, T., Koizumi, T. and Ando, J. (1996) An experimental study of the garnet-perovskite transformation in the system $MgSiO_{3}-Mg_{3}Al_{2} \; Si_{3}O_{12}$. Phys. Earth Planet. Int., 96, 147-157 https://doi.org/10.1016/0031-9201(96)03147-0
  13. Kesson, S.E., Fitz Gerald, J.D., Shelley, J.M.G. and Withers, R.L. (1995) Phase relations, structure and crystal chemistry of some aluminous silicate perovskites. Earth Planet. Sci. Lett., 134, 187-201 https://doi.org/10.1016/0012-821X(95)00112-P
  14. Klein, C. and Hurlbut Jr. C.S. (1985) Manual of mineralogy, after JD Dana, John Wiley & Sons. NY, pp 596
  15. Kubo, A. and Akaogi, M. (2000) Post-garnet transitions in the system $Mg_{4}SiO_{4}O_{12}-Mg_{3}Al_{2}SiO_{3}O_{12}$ up to 28 GPa: phase relations of gamet, ilmenite and perovskite. Phys. Earth Planet. Int., 121, 85-102 https://doi.org/10.1016/S0031-9201(00)00162-X
  16. Lee, D.Y. and Shin, H.J. (2002) Introduction of synchrotron radiation science. Chungmungac, pp. 485
  17. Leger, J.M., Redon, A.M. and Chateau, C. (1990) Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa. Phys. Chem. Mineral., 17, 161-167
  18. Levien, L., Prewitt, C.T. and Weidner, O.J. (1979) Compression of pyrope. Am. Mineral., 64, 805-808
  19. Liu, L.G. (1975a) High-pressure reconnaissance investigation in the system $Mg_{3}Al_{2}Si_{3}O_{12}-Fe_{3}Al_{2}SiO_{3}O_{12}$. Earth Planet. Sci. Lett., 26, 425-433 https://doi.org/10.1016/0012-821X(75)90018-7
  20. Liu, L.G. (1975b) Chemistry and structure of high pressure phase of garnets rich in almandite. Nature, 255, 213-215 https://doi.org/10.1038/255213a0
  21. Olijnyk, H., Paris, E., Geiger, C.A. and Lager, G.A. (1991) Compressional study of katoite ($Ca_{3}Al_{2}(O_{4}H_{4})_{3}$) and grossular garnet. J. Geophys. Res., 96, 14313-14318 https://doi.org/10.1029/91JB01180
  22. O'Neill, B. and Jeanloz, R. (1994) $MgSiO_{3}-FeSiO_{3}-Al_{2}O_{3}$ in the Earth's lower mantle : Perovskite and garnet at 1200 km depth. J. Geophys, Res., 99, 19901-19915 https://doi.org/10.1029/94JB01752
  23. Sato, Y., Akaogi, M. and Akimoto, S. (1978) Hydrostatic compression of the synthetic garnets pyrope and almandine. J. Geophys. Res., 83, 335-338 https://doi.org/10.1029/JB083iB01p00335
  24. Singh, V. Gautam, A.K. and Sing, K.S. (2004) Analysis of a P-V-T relationship for MgO, Physica B, 352, 164-171 https://doi.org/10.1016/j.physb.2004.07.006
  25. Takahashi, T. and Liu, L.G. (1970) Compression of ferromagnesian garnets and the effect of solid solutions on the bulk moduius. J. Geophys. Res., 75, 5757-5766 https://doi.org/10.1029/JB075i029p05757
  26. Utsumi, W., Weidner, O.J. and Liebermann, R.C. (1998) Volume measurement of MgO at high pressures and high temperatures. AGU, 101, 327-303
  27. Vinet, P. and Ferrante, J. (1987) Compressibility of solids. J. Geophys. Res., 92, 9319-9325 https://doi.org/10.1029/JB092iB09p09319
  28. Woodland, AB., Angel, R.1., Koch, M., Kunz, M. and Miletich, R. (1999) Equations of state for $Fe_{3}^{2+}Fe_{3}^{2+}Si_{3}O_{12}$ 'Skiagite' garnet and $Fe_{2}SiO_{4}-Fe_{3}O_{4}$ spinel solid sloutions. J. Geophys. Res., 104, 20049-20058 https://doi.org/10.1029/1999JB900206