DOI QR코드

DOI QR Code

거친 표면 형상측정을 위한 점광원 절대간섭계의 오차해석과 시스템 변수의 보

Multiple-Point-Diffraction Interferometer : Error Analysis and Calibration

  • 김병창 (경남대학교 기계자동화공학부) ;
  • 김승우 (한국과학기술원 기계공학과)
  • Kim, Byoung-Chang (Department of Mechanical Engineering and Automation, Kyungnam University) ;
  • Kim, Seung-Woo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2005.08.01

초록

표면거칠기가 큰 가공면의 표면형상을 비접촉 고속 측정 하기 위해 고안된 점광원 절대간섭계는 점광원의 위치가 시스템 변수로 정의된다. 시스템 오차인 점광원의 위치 오차가 측정 결과에 미치는 영향을 분석하며, 이를 보정하기 위해 CCD 카메라를 이용한 보정법을 제안한다. 제안된 방법을 검증하기 위해 기준면을 측정하여 측정 정밀도의 향상을 확인하며, 이를 거친 표면형상의 특징을 가진 칩모듈 측정에 적용하였다. 측정 결과 기존의 촉침식 측정기와 $50mm{\time}50mm$의 영역에서 $9.8{\mu}m$의 측정 차이를 보임을 확인하였다.

An absolute interferometer system with multiple point-sources is devised for tile 3-D measurement of rough surface profiles. The positions of the point sources are determined to be the system parameters that influence the measurement accuracy, so they are calibrated precisely prior to performing actual measurements. For the calibration, a CCD camera composed of a two-dimensional array of photo-detectors was used. Performing optimization of the cost function constructed with phase values measured at each pixel on the CCD camera, the position coordinates of each point source is precisely determined. Measurement results after calibration performed for the warpage inspection of chip scale packages (CSPs) demonstrate that the maximum discrepancy is 9.8 mm with a standard deviation o( 1.5 mm in comparison with the test results obtained by using a Form Taly Surf instrument.

키워드

참고문헌

  1. O. Kwon, J. Wyant, and C. Hayslett, 'Rough surface interferometry at $10.6{\mu}m$,' Appl. Opt., vol.19, no.11, pp. 1862, 1980 https://doi.org/10.1364/AO.19.001980
  2. K. Verma, B. Han, 'Far-infrared fizeau interferometry,' Applied Optics, vol.40, no.28, pp. 4981, 2001 https://doi.org/10.1364/AO.40.004981
  3. P. J. de Groot, 'Grating interferometer for flatness testing,' Opt. Lett. vol.21, no.3, pp. 228, 1996 https://doi.org/10.1364/OL.21.001996
  4. Y. Y. Cheng, J. Wyant, 'Two-wavelength phase shifting interferometry, ' Appl. Opt. vol.23, pp. 4539, 1984 https://doi.org/10.1364/AO.23.004539
  5. B.C. Kim, S.W. Kim, 'Absolute interferometer for threedimensional profile measurement of rough surfaces,' Opt. Lett. vol.28, no.7, pp. 528, 2003 https://doi.org/10.1364/OL.28.000528
  6. T. Takatsuji, M. Goto, T. Kurosawa, Y. Tanimura, Y. Koseki, 'The first measurement of a three-dimensional coordinate by use of a laser tracking interferometer system based on trilateration,' Meas. Sci. Technol. vol.9, no.1, pp. 38, 1998 https://doi.org/10.1088/0957-0233/9/1/006
  7. Gray E. Sommargren, 'Diffraction methods raise interferometer accuracy,' Laser Focus World, vol.32, no.8, pp. 6, 1996
  8. H.G. Rhee, S.W. Kim, 'Absolute distance measurement by two point diffraction interferometry,' Appl. Opt. vol. 41, no.28, pp. 5921, 2002 https://doi.org/10.1364/AO.41.005921
  9. Cezard Z. Janikow, Zbigniew Michalewicz, 'A specialized genetic algorithm for numerical optimization problems,' Proc 2 Int IEEE Conf Tools Artif Intell, pp. 798, 1990