초록
A problem raised by Selfridge and solved by Pomerance asks to find the pairs (a, b) of natural numbers for which $2^a\;-\;2^b$ divides $n^a\;-\;n^b$ for all integers n. Vajaitu and one of the authors have obtained a generalization which concerns elements ${\alpha}_1,\;{\cdots},\;{{\alpha}_{\kappa}}\;and\;{\beta}$ in the ring of integers A of a number field for which ${\Sigma{\kappa}{i=1}}{\alpha}_i{\beta}^{{\alpha}i}\;divides\;{\Sigma{\kappa}{i=1}}{\alpha}_i{z^{{\alpha}i}}\;for\;any\;z\;{\in}\;A$. Here we obtain a further generalization, proving the corresponding finiteness results in a multidimensional setting.