• Title/Summary/Keyword: polynomials of several variables

Search Result 19, Processing Time 0.027 seconds

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

FORMULAS DEDUCIBLE FROM A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.603-614
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to present two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi's generalization of the Gottlieb polynomials in m variables expressed in terms of well-developed Lauricella series $F^{(m)}_D[{\cdot}]$.

$q$-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN TWO VARIABLES

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.253-265
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subse- quently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}_{n}^{m}(\cdot)$. Here, we aim at defining a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}_{n}^{2}(\cdot)$ and presenting their several generating functions.

Korobov Polynomials of the Fifth Kind and of the Sixth Kind

  • Kim, Dae San;Kim, Taekyun;Kwon, Hyuck In;Mansour, Toufik
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.329-342
    • /
    • 2016
  • Recently, Korobov polynomials have been received a lot of attention, which are discrete analogs of Bernoulli polynomials. In particular, these polynomials are used to derive some interpolation formulas of many variables and a discrete analog of the Euler summation formula. In this paper, we extend these family of polynomials to consider the Korobov polynomials of the fifth kind and of the sixth kind. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials.

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

MAXIMUM MODULI OF UNIMODULAR POLYNOMIALS

  • Defant, Andreas;Garcia, Domingo;Maestre, Manuel
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.209-229
    • /
    • 2004
  • Let $\Sigma_{$\mid$\alpha$\mid$=m}\;s_{\alpha}z^{\alpha},\;z\;{\in}\;{\mathbb{C}}^n$ be a unimodular m-homogeneous polynomial in n variables (i.e. $$\mid$s_{\alpha}$\mid$\;=\;1$ for all multi indices $\alpha$), and let $R\;{\subset}\;{\mathbb{C}}^n$ be a (bounded complete) Reinhardt domain. We give lower bounds for the maximum modules $sup_{z\;{\in}\;R\;$\mid$\Sigma_{$\mid$\alpha$\mid$=m}\;s_{\alpha}z^{\alpha}$\mid$$, and upper estimates for the average of these maximum moduli taken over all possible m-homogeneous Bernoulli polynomials (i.e. $s_{\alpha}\;=\;{\pm}1$ for all multi indices $\alpha$). Examples show that for a fixed degree m our estimates, for rather large classes of domains R, are asymptotically optimal in the dimension n.

EXTENSIONS OF MULTIPLE LAURICELLA AND HUMBERT'S CONFLUENT HYPERGEOMETRIC FUNCTIONS THROUGH A HIGHLY GENERALIZED POCHHAMMER SYMBOL AND THEIR RELATED PROPERTIES

  • Ritu Agarwal;Junesang Choi;Naveen Kumar;Rakesh K. Parmar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.575-591
    • /
    • 2023
  • Motivated by several generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials, by choosing to use a very generalized Pochhammer symbol, we aim to introduce certain extensions of the generalized Lauricella function F(n)A and the Humbert's confluent hypergeometric function Ψ(n) of n variables with, as their respective particular cases, the second Appell hypergeometric function F2 and the generalized Humbert's confluent hypergeometric functions Ψ2 and investigate their several properties including, for example, various integral representations, finite summation formulas with an s-fold sum and integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions. Also, pertinent links between the major identities discussed in this article and different (existing or novel) findings are revealed.

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

Some Theorems Connecting the Unified Fractional Integral Operators and the Laplace Transform

  • Soni, R. C.;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.153-159
    • /
    • 2005
  • In the present paper, we obtain two Theorems connecting the unified fractional integral operators and the Laplace transform. Due to the presence of a general class of polynomials, the multivariable H-function and general functions ${\theta}$ and ${\phi}$ in the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials (which are special cases of a general class of polynomials) and special functions involving one or more variables (which are particular cases of the multivariable H-function) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. Thus the Theorems obtained by Srivastava et al. [9] follow as simple special cases of our findings.

  • PDF

SOME RESULTS INVOLVING THE MULTIPLE H FUNCTION

  • Mathur, B.L.;Krishna, Shri
    • Kyungpook Mathematical Journal
    • /
    • v.18 no.2
    • /
    • pp.239-244
    • /
    • 1978
  • The object of the present paper is to obtain certain results involving the H function of several complex variables. An integral involving the generalized Whittaker functions and the multiple H function has been evaluated and this result has been further utilized in finding out an expansion formula for the multiple H function in terms of the Laguerre polynomials. Some particular cases of interest have also been indicated.

  • PDF