• Title/Summary/Keyword: exponential congruences

Search Result 1, Processing Time 0.014 seconds

A CLASS OF EXPONENTIAL CONGRUENCES IN SEVERAL VARIABLES

  • Choi, Geum-Lan;Zaharescu, Alexandru
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.717-735
    • /
    • 2004
  • A problem raised by Selfridge and solved by Pomerance asks to find the pairs (a, b) of natural numbers for which $2^a\;-\;2^b$ divides $n^a\;-\;n^b$ for all integers n. Vajaitu and one of the authors have obtained a generalization which concerns elements ${\alpha}_1,\;{\cdots},\;{{\alpha}_{\kappa}}\;and\;{\beta}$ in the ring of integers A of a number field for which ${\Sigma{\kappa}{i=1}}{\alpha}_i{\beta}^{{\alpha}i}\;divides\;{\Sigma{\kappa}{i=1}}{\alpha}_i{z^{{\alpha}i}}\;for\;any\;z\;{\in}\;A$. Here we obtain a further generalization, proving the corresponding finiteness results in a multidimensional setting.