DOI QR코드

DOI QR Code

Hg2+-Selective Chemosensor Derived from 8-Hydroxyquinoline Having Benzothiazole Function in Aqueous Environment

  • Published : 2004.06.20

Abstract

Newly synthesized 8-hydroxyquinoline based benzothiazole derivative 2 showed a distinctive $Hg^{2+}$-selectivity over other transition metal ions in aqueous solution. The fluorescence emission at 455 nm of 2 was completely quenched upon interaction with $Hg^{2+}$ ions in dioxane-$H_2O$ system (9 : 1, v/v). The selectivity was decreased in the order of $Hg^{2+}\;>>\;Cu^{2+}\;>\;Cd^{2+}\;>\;Pb^{2+}\;{\thickapprox}\;Zn^{2+}\;{\thickapprox}\;Ni^{2+},\;and\;Hg^{2+}$ concentration dependent fluorescence quenching profile was observed in the presence of common interfering metal ions as background. The fluorescence behavior of 2 suggests that the prepared compound could be used as a fluorescent signaling subunit for the construction of new $Hg^{2+}$-sensitive ON-OFF type supramolecular switching systems.

Keywords

References

  1. Chemosensors of Ion and Molecular Recognition; Desvergne, J. P.; Czarnik, A. W., Eds.; Kluwer: Dordrecht, 1997.
  2. Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1993.
  3. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270. https://doi.org/10.1021/ja037995g
  4. Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S.-K. J. Org. Chem. 2004, 69, 181. https://doi.org/10.1021/jo034713m
  5. Chan, W. H.; Yang, R. H.; Wang, K. M. Anal. Chim. Acta 2001, 444, 261. https://doi.org/10.1016/S0003-2670(01)01106-0
  6. Wu, K.; Ahmad, M. O.; Chen, C.; Huang, G.; Hon, Y.; Chou, P. Chem. Commun. 2003, 890.
  7. Kim, S. K.; Lee, J. H.; Yoon, J. Bull. Korean Chem. Soc. 2003, 24, 1032. https://doi.org/10.5012/bkcs.2003.24.7.1032
  8. Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. J. Am. Chem. Soc. 1999, 121, 5073. https://doi.org/10.1021/ja983802r
  9. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.;Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc.2000, 122, 6769. https://doi.org/10.1021/ja0006292
  10. Yoon, J.; Ohler, N. E.; Vance, D. H.; Aumiller, W. D.; Czarnik, A.W. Tetrahedron Lett. 1997, 38, 3845. https://doi.org/10.1016/S0040-4039(97)00768-5
  11. Pearce, D. A.; Jotterand, N.; Carrico, I. S.; Imperiali, B. J. Am.Chem. Soc. 2001, 123, 5160. https://doi.org/10.1021/ja0039839
  12. Leung, L. M.; Lo, W. Y.; So, S. K.; Lee, K. M.; Choi, W. K. J.Am. Chem. Soc. 2000, 122, 5640. https://doi.org/10.1021/ja000927z
  13. Devol, I.; Bardez, E. J. Colloid Interface Sci. 1998, 200, 241. https://doi.org/10.1006/jcis.1997.5356
  14. Pohl, R.; Montes, V. A.; Shinar, J.; Anzenbacher Jr., P. J. Org.Chem. 2004, 69, 1723. https://doi.org/10.1021/jo035602q
  15. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3. https://doi.org/10.1016/S0010-8545(00)00246-0
  16. Pla-Dalmau, A. J. Org. Chem. 1995, 60, 5468. https://doi.org/10.1021/jo00122a027
  17. Bagatin, I. A.; Toma, H. E. New J. Chem. 2000, 24, 841. https://doi.org/10.1039/b005127f
  18. Bardez, E.; Devol, I.; Larrey, B.; Valeur, B. J. Phys. Chem. 1997,101, 7786. https://doi.org/10.1021/jp971293u
  19. Moberg, C.; Muhammed, M.; Svensson, G.; Weber, M. J. Chem.Soc. Chem. Commun. 1988, 810.
  20. Nishizawa, S.; Cui, Y.-Y.; Minagawa, M.; Morita, K.; Kato, Y.;Taniguchi, S.; Kato, R.; Teramae, N. J. Chem. Soc. Perkin 2 2002,866.
  21. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem.1996, 68, 1414. https://doi.org/10.1021/ac950944k

Cited by

  1. -Selective Chemodosimeter Derived from 8-Hydroxyquinoline vol.8, pp.16, 2006, https://doi.org/10.1021/ol060788b
  2. Hg2+-Selective Chemosensor Derived from 8-Hydroxyquinoline Having Benzothiazole Function in Aqueous Environment. vol.35, pp.44, 2004, https://doi.org/10.1002/chin.200444164
  3. Design and Synthesis of Nanosensor Based on CdSe Quantum Dots Functionalized with 8-Hydroxyquinoline: a Fluorescent Sensor for Detection of Al3+ in Aqueous Solution vol.28, pp.3, 2018, https://doi.org/10.1007/s10895-018-2238-z
  4. Photonic logic gates based on metal ion and proton induced multiple outputs in 5-chloro-8-hydroxyquinoline based tetrapod vol.30, pp.11, 2006, https://doi.org/10.1039/b607524j
  5. Solvatochromic Fluorescence Behavior of 8-Aminoquinoline-Benzothiazole: A Sensitive Probe for Water Composition in Binary Aqueous Solutions vol.26, pp.1, 2005, https://doi.org/10.5012/bkcs.2005.26.1.047
  6. Rhodamine-based chemosensor for Hg2+ in aqueous solution with a broad pH range and its application in live cell imaging vol.8, pp.18, 2010, https://doi.org/10.1039/c0ob00013b
  7. A water-soluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl)benzimidazole via ligand-to-metal charge transfer (LMCT) vol.4, pp.32, 2004, https://doi.org/10.1039/c4ra00060a
  8. Highly Selective Ratiometric Fluorescent Probes for Detection of Perborate Based on Excited‐State Intramolecular Proton Transfer (ESIPT) in Environmental Samples and Living Cells vol.1, pp.3, 2004, https://doi.org/10.1002/slct.201500032
  9. Reaction-based sensing of fluoride ions using desilylation method for triggering excited-state intramolecular proton transfer vol.28, pp.7, 2004, https://doi.org/10.1080/10610278.2015.1122195
  10. Magnified Fluorescent Aptasensors Based on a Gold Nanoparticle−DNA Hybrid and DNase I for the Cycling Detection of Mercury(II) Ions in Aqueous Solution vol.58, pp.47, 2004, https://doi.org/10.1021/acs.iecr.9b03622