Characterization and Evaluation of a Distinct Fusion Ability in the functionally Related Cyclic Amidohydrolase Family Enzymes

  • Kim, Hak-Sung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Dong-Eun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Geun-Joong (Department of Molecular Science and Technology, Ajou University)
  • Published : 2002.05.01

Abstract

The cyclic amidohydrolase family enzymes, which include allantoinase, dihydroorotase, dihydropyrimidinase and (phenyl)hydantoinase, are metal-dependent hydrolases and play a crucial role in the metabolism of purine and pyrimidine in vivo. Each enzyme has been independently characterized, and thus well documented, but studies on the higher structural traits shared by members of this enzyme family are rare due to the lack of comparative study. Here, we report upon the expression in E. coli cells of maltose-binding protein (MBP)- and glutathione S-transferase (GST)-fused cyclic amidohydrolase family enzymes, facilitating also for both simple purification and high-level expression. Interestingly, the native quaternary structure of each enzyme was maintained even when fused with MBP and GST. We also found that in fusion proteins the favorable biochemical properties of family enzymes such as, their optimal pHs, specific activities and kinetic properties were conserved compared to the native enzymes. In addition, MBP-fused enzymes showed remarkable folding ability in-vitro. Our findings, therefore, suggest that a previously unrecognized trait of this family, namely the ability to functional fusion with some other protein but yet to retain innate properties, is conserved. We described here the structural and evolutionary implications of the properties in this family enzyme.

Keywords

References

  1. Trends Biochem. Sci. v.20 DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily Holm, L.;C. Sander https://doi.org/10.1016/S0968-0004(00)89071-4
  2. Curr. Opin. Chem. Biol. v.3 Evolution of protein function, from a structural perspective Todd, A. E.;C. A. Orengo;J. M. Thornton https://doi.org/10.1016/S1367-5931(99)00007-1
  3. Proc. Natl. Acad. Sic. v.95 Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics Zarembinski, T. I.;L. W. Hung;H. J. Mueller Dieckmann;K. K. Kim; H. Yokota;R. Kim; S. H. Kim https://doi.org/10.1073/pnas.95.26.15189
  4. Nature v.357 Proteins: One thousand families for the molecular biologist Chothia, C. https://doi.org/10.1038/357543a0
  5. Proteins v.25 Evolution of beta-amylase: Patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms Pujadas, G.;F. M. Ramirez;R. Valero;J. Palau https://doi.org/10.1002/prot.6
  6. Biochem. J. v.326 Comparative anatomy of the aldoketo reductase superfamily Jez, J. M.;M. J. Bennett;B. P. Schlegel; M. Lewis;T. M. Penning https://doi.org/10.1042/bj3260625
  7. Proteins v.28 An evolutionary treasure: unification of a broad set of amidohydrolases related to urease Holm, L.;C. Sander https://doi.org/10.1002/(SICI)1097-0134(199705)28:1<72::AID-PROT7>3.0.CO;2-L
  8. Bacteriol. Rev. v.40 Degradation of purines and pyrimidines by microorganisms Vogels, G. D.;C. van der Drift
  9. Mol. Microbiol v.33 Structural and transcriptional analysis of the pyrABCN, pvrD and pvrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases Aleksenko, A.;W. Liu;Z. Gojkovic;J. Nielsen;J. Piskur https://doi.org/10.1046/j.1365-2958.1999.01507.x
  10. Biol. Chem. v.379 Molecular evolution of hydantoinases May, O.;A. Habenicht;R. Matters;C. Syldatk;M. Siemann
  11. Biochem. J. v.330 Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring Kim, G. J.;H. S. Kim https://doi.org/10.1042/bj3300295
  12. Biochemistry v.34 Function of conserved histidine residues in mam-malian dihydroorotase Zimmermann, B. H.;N. M. Kemling;D. R. Evans https://doi.org/10.1021/bi00021a015
  13. Proc. Natl. Acad. Sci. v.87 Mammalian dihydroorotase: nucleotide sequence peptide sequences, and svolution of the dihydroorotase domain of the multifunctional protein CAD Simmer, J. P.;R. E. Kelly;A. G. Jr. Rinker;B. H. Zimmermann;J. L. Scully; H. Kim;D. R. Evans https://doi.org/10.1073/pnas.87.1.174
  14. Appl. Environ. Microbiol. v.66 Construction and evaluation of a novel bifunctional N-carbamylase-D-hydantoinase fusion enzyme Kim. G. J.;D. E. Lee.;H. S. Kim https://doi.org/10.1128/AEM.66.5.2133-2138.2000
  15. E. coli. J. Bacteriol. v.182 Functional expression and characterization of the two cyclic ami dohydrolase enzymes, allantoinase and a novel phenylhydantoinase Kim, G. J.;D. E. Lee;H. S. Kim https://doi.org/10.1128/JB.182.24.7021-7028.2000
  16. J. Biol. Chem. v.274 Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein Yuan, G.;J. C. Bin;D. J. Mckay;F. F. Snyder https://doi.org/10.1074/jbc.274.12.8175
  17. J. Bacteriol. v.181 Genetic analysis of a chromosomal region containing genses required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli Cusa, E.;N. Obradors;L. Baldoma;J. Badia;J. Aguilar
  18. J. Bacteriol v.169 Nucleotide sequence and expression of the pvrC gene of Escherichia coli K-12 Wilson, H. R.;P. T. Chan;C. L. Turnbough Jr. https://doi.org/10.1128/jb.169.7.3051-3058.1987
  19. Biochem. biophys. Res. Commun. v.243 C-Terminal regions of Dhydantoinases are nonessential for catalysis, but affect the oligomeric structure Kim, G. J.;H. S. Kim https://doi.org/10.1006/bbrc.1997.8037
  20. J. Biol. Chem. v.266 Dihydroorotase from Escherichia coli. Substitution of Co(Ⅱ) for the active site Zn(Ⅱ) Brown, D. C.;K. D. Collins
  21. Appl. Environ. Microbiol v.65 Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp. strain A17p-4 Soong, C. L.;J. Ogawa;M. Honda;S. Shimizu
  22. J. Bacteriol. v.174 Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding L0amino acids from the native plasmid of Pseudomonas sp. strain NS671 Watabe, K.;T. Ishikawa;Y. Mukohara;H. Nakamura https://doi.org/10.1128/jb.174.3.962-969.1992
  23. Nucleic Acids Res v.22 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Thompson, J. D.;D. G. Higgins;T. J. Gibson https://doi.org/10.1093/nar/22.22.4673
  24. Mol. Gen. Genet. v.255 Primary structure, sequence analysis, and expression of the thermostable D-hydantoinase from bacillus stearothermophilus SD1 Kim, G. J.;J. H. Park;D. C. Lee;H. S. Ro;H. S. Kim
  25. Protein Sci. v.8 Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubillty of polypeptides to which it is fused Kapust, R. B.;D. S. Waugh https://doi.org/10.1110/ps.8.8.1668
  26. Biosci. Biotech. Biochem. v.58 A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: Cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme Mukohara, Y.;T. Ishikawa;K. Watabe;H. Nakamura https://doi.org/10.1271/bbb.58.1621
  27. Gene v.180 A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution Hamajima, N.;K. Matsuda;S. Sakata;N. Tamaki;M. Sasaki;M. Nonaka https://doi.org/10.1016/S0378-1119(96)00445-3
  28. Mol. Gen. Genet. v.213 The aspartate transcarbamylase domain of a mammalian multifunctional protein expressed as an independent enzyme in Escherichia coli Maley, J. A.;J. N. Davidson https://doi.org/10.1007/BF00339592
  29. Biochemistry v.34 The two monofunctional domains of octameric formiminotransferase-cyclodeaminase exist as dimmers Muley, L. L.;R. E. Mackenzie https://doi.org/10.1021/bi00033a006
  30. Mol. Cell. Biol. v.8 Cloning of the PYR3 geneof Ustilago maydis and its use in DNA transformation Banks, G. R.;S.Y. Taylor
  31. Arch. Microbiol. v.164 Purification and characterization of dihydroorotase from Pseudomonas putida Ogawa, J. S. Shimizu https://doi.org/10.1007/BF02529982
  32. BioEssays v.15 The evolutionary history of the first three enzymes in pyrimidine biosynthesis Davidson, J. N.;K. C. Chen;R. S. Jamison;L. A. Musmanno;C. B. Kern https://doi.org/10.1002/bies.950150303
  33. J. Biol. Chem. v.260 Immunochemical analysis of the domain structure of CAD, the multifunctional protein that initiates pyrimidine biosynthesis in mammalian cells Grayson, D. R.;L. Lee;D. R. Evans
  34. Gene v.94 Location of the dihydroorotate synthetase Williams, N. K.;R. J. Simpson;R. L. Moritz;Y. Peide;I. Crofts;E. Minasian;S. J. Leach;R. G. Wake;R. I. Chrestopherson https://doi.org/10.1016/0378-1119(90)90399-C
  35. J. Biol. Chem. v.261 The dihydroorotase domain of the multifunctional protein CAD. Subunit structure, zinc content, and kinetics Kelly, R. E.;M. I. Mally;D. R. Evans
  36. Protein Eng. v.6 Expression of catalytically active hamster dihydroorotase domain in Escherichia coli: Purification and characterization Williams, N. K.;Y. Peide;K. K. Seymout;G. B. Ralston;R. I. Christopherson https://doi.org/10.1093/protein/6.3.333