• Title/Summary/Keyword: dihydroorotase

Search Result 3, Processing Time 0.017 seconds

Effect of fur on pyrC Gene Expression

  • Chai, Sang-Ho;Song, Chang-Kyu;Kim, Seong-Kwun;Park, Jun-Ho;Wee, Se-Chan
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.583-589
    • /
    • 2007
  • The promoter region of pyrC (dihydroorotase) gene of Escherichia coli was shown to have Fur protein binding properties by gel retardation assay. In vivo regulation of the pyrC expression was studied by measuring dihydroorotase activity and ${\beta}$-galactosidase level in the $fur^+$ and $fur^-$ genetic background. The expression of chromosomal dihydroorotase activity and ${\beta}$-galactosidase activity of pyrC-lacZ fusion plasmid was repressed to about 30% and 17%, respectively in the $fur^+$ strain compared to those in the $fur^-$ strain. Divalent ions such as $Fe^{2+}$ and $Zn^{2+}$ were not required for the repression. PyrC expression was also reduced to one half by 1 mM uracil. The effect of uracil was independent on the fur gene.

Characterization and Evaluation of a Distinct Fusion Ability in the functionally Related Cyclic Amidohydrolase Family Enzymes

  • Kim, Hak-Sung;Lee, Dong-Eun;Kim, Geun-Joong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • The cyclic amidohydrolase family enzymes, which include allantoinase, dihydroorotase, dihydropyrimidinase and (phenyl)hydantoinase, are metal-dependent hydrolases and play a crucial role in the metabolism of purine and pyrimidine in vivo. Each enzyme has been independently characterized, and thus well documented, but studies on the higher structural traits shared by members of this enzyme family are rare due to the lack of comparative study. Here, we report upon the expression in E. coli cells of maltose-binding protein (MBP)- and glutathione S-transferase (GST)-fused cyclic amidohydrolase family enzymes, facilitating also for both simple purification and high-level expression. Interestingly, the native quaternary structure of each enzyme was maintained even when fused with MBP and GST. We also found that in fusion proteins the favorable biochemical properties of family enzymes such as, their optimal pHs, specific activities and kinetic properties were conserved compared to the native enzymes. In addition, MBP-fused enzymes showed remarkable folding ability in-vitro. Our findings, therefore, suggest that a previously unrecognized trait of this family, namely the ability to functional fusion with some other protein but yet to retain innate properties, is conserved. We described here the structural and evolutionary implications of the properties in this family enzyme.

Molecular Cloning and Nucleotide Sequence Analysis of pyrB Gene Encoding Aspartate Transcarbamylase from Psychrophilic Sporosarcina psychrophilia (저온성균 Sporosarcina psychrophilia로부터 Aspartate Transcarbamylase 유전자의 클로닝 및 염기서열 분석)

  • 성혜리;안원근;김사열
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 2002
  • The Sporosarcina psychrophilia pyrB gene, which encodes aspartate transcarbamylase (ATcase), was cloned on Sau3AI restriction endonuclease fragment inserted into pUC19 plasmid vector, S. psychrophilia pyrB gene was expressed in Escherichia coli pyrB mutant for the complementation test. The sequence of 2,606 nucleotides including putative pyrB gene was determined. The region contained one full open reading frame (ORf) and two partial ORFs. The deduced amino acid sequence of the second ORF showed 59% identity with that of Bacillus caldolyticus ATCase. The first and third partial ORFs were closely related to the uracil permease (pyrP) and dihydroorotase (pyrC), respectively. Besides, potential terminator, antiterminator, and anti-antiterminator structures were found in the intergenic region between pyrP and pyrB. These results suggested that S. psychrophilia pyrimidine nucleotide biosynthesis genes are clustered as well as other Bacillus sp. Over-expressed product of pyrB encoding ATCase was purified and analyzed by the SDS-PAGE. The purified PyrB protein turned out to be molecular mass of 27 kDa and showed ATCase activity.