Antibody Engineering

  • Hong, Hyo-Jeong (Antibody Engineering Laboratory, Research Institute of Bioscience and Biotechnology, Daejon, Aprogen, Inc., Bio Venture center, Research Institute of Bioscience and Biotechnology, Daejeon) ;
  • Kim, Sun-Taek (Aprogen, Inc., Bio Venture center, Research Institute of Bioscience and Biotechnology, Daejeon)
  • Published : 2002.05.01

Abstract

Monoclonal antibodies (Mabs) have been used as diagnostic and analytical reagents since hybridoma technology was invented in 1975. In recent years, antibodies have become increasingly accepted as therapeutics for human diseases, particularly for cancer, viral infection and autoimmune disorders. An indication of the emerging significance of antibody-based therapeutics is that over a third of the proteins currently undergoing clinical trials in the United States are antibodies. Until the late 1980's, antibody technology relied primarily on animal immunization and the expression of engineered antibodies. However, the development of methods for the expression of antibody fragments in bacteria and powerful techniques for screening combinatorial libraries, together with the accumulating structure-function data base of antibodies, have opened unlimited opportunities for the engineering of antibodies with tailor-made properties for specific applications. Antibodies of low immunogenicity, suitable for human therapy and in vivo diagnosis, can now be developed with relative ease. Here, antibody structure-function and antibody engineering technologies are described.

Keywords

References

  1. Annu Rev Biomed Eng. v.2 Antibody engineering Maynard, J.;G. Georgiou https://doi.org/10.1146/annurev.bioeng.2.1.339
  2. Trends Biotechnol. v.13 Clinical issues in antibody design Chester, K. A.;R. E. Hawkins https://doi.org/10.1016/S0167-7799(00)88968-4
  3. Nature v.321 Replacing the complementarity-determining regions in a human antibody with those from a mouse Jones, P. T.;P. H. Dear;J. Foote;M. S. Neuberger;G. Winter https://doi.org/10.1038/321522a0
  4. Nature v.332 Reshaping human antibodies for therapy Riechmann, L.;M. Clark;H. Waldmann;G. G. Winter https://doi.org/10.1038/332323a0
  5. Mol. Immunol. v.32 The immunogenicity of the 7E3 murine monoclonal Fab antibody fragment variable region is dramatically reduced in humans by substitution of human for murine constant regions Knight, D. M.;C. Wagner;R. Jordan;M. F. McAleer;R. DeRita;D. N. Fass;B. S. Coller;H. F. Weisman;J. Ghrayeb https://doi.org/10.1016/0161-5890(95)00085-2
  6. Immunol. Rev. v.130 Engineering antibodies for therapy Adair, J. R. https://doi.org/10.1111/j.1600-065X.1992.tb01519.x
  7. Nature v.363 Naturally occurring antibodies devoid of light chains Hamers-Casterman, C.;T. Atarhouch;S. Muyldermans;G. Robinson;C. Hamers;E. B. Songa;N. Bendahman;R. Hamers https://doi.org/10.1038/363446a0
  8. Nature Struct. Biol. v.3 Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme Desmyter, A.;T. R. Transue;M. A. Ghahroudi;M. H. Thi;F. Poortmans;R. Hamers;S. Muyldermans; L. Wyns https://doi.org/10.1038/nsb0996-803
  9. Structure Fold. Des. v.7 A single-domain antibody fragment in complex with RNase A: Non-canonical loop structures and nanomolar affinity using two CDR loops Decanniere, K.;A. Desmyter;M. Lauwereys;M. A. Ghahroudi;S. Muyldermans;L. Wyns https://doi.org/10.1016/S0969-2126(99)80049-5
  10. Int. J. Cancer. v.98 Efficient tumor targeting by singledomain antibody fragments of camels Cortez-Retamozo, V.;M. Lauwereys;G. Hassanzadeh Gh;M. Gobert;K. Conrath;S. Muyldermans;P. De Baetselier;H. Revets https://doi.org/10.1002/ijc.10212
  11. J. Mol. Biol. v.290 An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface Reiter, Y.;P. Schuck;L. F. Boyd;D. Plaksin https://doi.org/10.1006/jmbi.1999.2923
  12. Proc Natl Acad Sci. v.85 Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli Huston, J. S.;D. Levinson;M. Mudgett-Hunter;M. S. Tai;J. Movotny;M. N. Margolies;R. J. Ridge;R. E. Bruccoleri;E. Haber;R. Crea https://doi.org/10.1073/pnas.85.16.5879
  13. Biochemistry v.30 Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli Pantoliano, M. W.;R. E. Bird;S. Johnson;E. D. Asel;S. W. Dodd;J. F. Wood;K. D. Hardman https://doi.org/10.1021/bi00106a007
  14. J. Immunol. Methods v.205 Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology Turner, D. J.;M. A. Ritter;A. J. George https://doi.org/10.1016/S0022-1759(97)00057-4
  15. Proc. Natl. Acad. Sci. v.95 Optimizing the stability of single-chain proteins by linker length and composition mutagenesis Robinson, C. R.;R. T. Sauer https://doi.org/10.1073/pnas.95.11.5929
  16. Biotechnology v.10 High level Escherichia coli expression and production of a bivalent humanized antibody fragment Carter, P.;R. F. Kelley;M. L. Rodrigues;B. Snedecor;M. Covarrubias;M. D. Velligan;W. L. Wong;A. M. Rowland;C. E. Kotts;M. E. Carver (et al) https://doi.org/10.1038/nbt0292-163
  17. Nature v.348 Phage antibodies: filamentous phage displaying antibody variable domains McCafferty, J.;A. D. Griffiths;G. Winter;D. J. Chiswell https://doi.org/10.1038/348552a0
  18. Nucleic Acids Res. v.19 Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains Hoogenboom, H. R.;A. D. Griffiths;K. S. Johnson;D. J. Chiswell;P. Hudson;G. Winter https://doi.org/10.1093/nar/19.15.4133
  19. Biotechnology v.9 Fab assembly and enrichment in a monovalent phage display system Garrard, L. J.;M. Yang;M. P. O'Connell;R. F. Kelley;D. J. Henner https://doi.org/10.1038/nbt1291-1373
  20. J. Immunol. v.147 Expression of antibody Fab domains on bacteriophage surfaces. Potential use for antibody selection Chang, C. N.;N. F. Landolfi;C. Queen
  21. Nature Biotechnol. v.14 Phage diabody repertoires for selection of large numbers of bispecific antibody fragments McGuinness, B. T.;G. Walter;K. FitzGerald;P. Schuler;W. Mahoney;A. R. Duncan;H. R. Hoogenboom https://doi.org/10.1038/nbt0996-1149
  22. Curr. Opin. Biotechnol. v.11 The use of recombinant antibodies in proteomics Holt, L. J.;C. Enever;R. M. de Wildt;I. M. Tomlinson https://doi.org/10.1016/S0958-1669(00)00133-6
  23. J. Mol. Biol. v.296 Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides Knappik, A.;L. Ge;A. Honegger;P. Pack;M. Fischer;G.Wellnhofer;A. Hoess;J. Wolle;A. Pluckthun;B. Virnekas
  24. Nature Biotechnol. v.18 Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display Hanes, J.;C. Schaffitzel;A. Knappik;A. Pluckthun https://doi.org/10.1038/82407
  25. In IBC International Conference on Antibody Engineering
  26. Nature Biotechnol. v.14 High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice Fishwild, D. M.;S. L. O'Donnell;T. Bengoechea;D. V. Hudson;F. Harding;S. L. Bernhard;D. Jones;R. M. Kay;K. M. Higgins;S. R. Schramm;N. Lonberg https://doi.org/10.1038/nbt0796-845
  27. Curr. Opin. Biotechnol. v.8 Production of human antibody repertoires in transgenic mice Bruggemann, M.;M. J. Taussig https://doi.org/10.1016/S0958-1669(97)80068-7
  28. Trends Biotechnol. v.17 Exploiting antibody-based technologies to manage environmental pollution Harris, B. https://doi.org/10.1016/S0167-7799(99)01308-6
  29. J. Mol. Biol. v.315 Towards proteome-wide production of monoclonal antibody by phage display Liu, B.;L. Huang;C. Sihlbom;A. Burlingame;J. D. Marks https://doi.org/10.1006/jmbi.2001.5276
  30. Nature Biotechnol. v.18 Antibody arrays for high-throughput screening of antibody-antigen interactions de Wildt, R. M.;C. R. Mundy;B. D. Gorick;I. M. Tomlinson https://doi.org/10.1038/79494
  31. Nucleic Acids Res. v.28 By-passing selection: direct screening for antibody-antigen interactions using protein arrays Holt, L. J.;K. Bussow;G. Walter;I. M. Tomlinson https://doi.org/10.1093/nar/28.15.e72