Extraction Analysis for Crossmodal Association Information using Hypernetwork Models

하이퍼네트워크 모델을 이용한 비전-언어 크로스모달 연관정보 추출

  • 허민오 (서울대학교 전기컴퓨터공학부) ;
  • 하정우 (서울대학교 전기컴퓨터공학부) ;
  • 장병탁 (서울대학교 전기컴퓨터공학부)
  • Published : 2009.02.09

Abstract

Multimodal data to have several modalities such as videos, images, sounds and texts for one contents is increasing. Since this type of data has ill-defined format, it is not easy to represent the crossmodal information for them explicitly. So, we proposed new method to extract and analyze vision-language crossmodal association information using the documentaries video data about the nature. We collected pairs of images and captions from 3 genres of documentaries such as jungle, ocean and universe, and extracted a set of visual words and that of text words from them. We found out that two modal data have semantic association on crossmodal association information from this analysis.

하나의 컨텐츠를 위해 동영상, 이미지, 소리, 문장과 같은 하나 이상의 모달리티로 전달하는 멀티모달 데이터가 증가하고 있다. 이러한 형태의 자료들은 잘 정의되지 않은 형태를 주로 가지기 때문에, 모달리티 간의 정보가 명백히 표현되지 못하는 경우가 많았다. 그래서, 본 연구에서 저자들은 자연계를 다루는 다큐멘터리 동영상 데이터를 이용하여 비전-언어 간의 상호 연관정보인 크로스모달 연관정보를 추출하고 분석하는 방법을 제시하였다. 이를 위해 정글, 바다, 우주의 세 가지 주제로 구성된 다큐멘터리로부터 이미지와 자막의 조합으로 이루어진 데이터를 모은 후, 그로부터 시각언어집합과 문장언어집합을 추출하였다. 분석을 통하여, 이 언어집합들간의 상호 크로스 모달 연관정보를 통해 생성된 다른 모달리티 데이터가 의미적으로 서로 관련이 있음을 확인할 수 있었다.

Keywords